The depth of a topological space X (g(X)) is defined as the supremum of the cardinalities of closures of discrete subsets of X. Solving a problem of Martínez-Ruiz, Ramírez-Páramo and Romero-Morales, we prove that the cardinal inequality |X|≤g(X)L(X)⋅F(X) holds for every Hausdorff space X, where L(X) is the Lindelöf number of X and F(X) is the supremum of the cardinalities of the free sequences in X.

S. Spadaro (2021). On closures of discrete sets. QUAESTIONES MATHEMATICAE, 44(6), 717-720 [10.2989/16073606.2019.1617364].

On closures of discrete sets

S. Spadaro
2021-01-01

Abstract

The depth of a topological space X (g(X)) is defined as the supremum of the cardinalities of closures of discrete subsets of X. Solving a problem of Martínez-Ruiz, Ramírez-Páramo and Romero-Morales, we prove that the cardinal inequality |X|≤g(X)L(X)⋅F(X) holds for every Hausdorff space X, where L(X) is the Lindelöf number of X and F(X) is the supremum of the cardinalities of the free sequences in X.
2021
S. Spadaro (2021). On closures of discrete sets. QUAESTIONES MATHEMATICAE, 44(6), 717-720 [10.2989/16073606.2019.1617364].
File in questo prodotto:
File Dimensione Formato  
TQMA_A_1617364 Spadaro.pdf

Solo gestori archvio

Tipologia: Versione Editoriale
Dimensione 553.07 kB
Formato Adobe PDF
553.07 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/481005
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact