We present a bound for the weak Lindelöf number of the Gδ-modification of a Hausdorff space which implies various known cardinal inequalities, including the following two fundamental results in the theory of cardinal invariants in topology: |X|≤2^{L(X)χ(X)} (Arhangel'skii) and |X|≤2^{c(X)χ(X)} (Hajnal-Juhasz). This solves a question that goes back to Bell, Ginsburg and Woods and is mentioned in Hodel's survey on Arhangel'skii's Theorem. In contrast to previous attempts we do not need any separation axiom beyond T2.

Angelo Bella, & Santi Spadaro (2020). A common extension of Arhangel'skii's Theorem and the Hajnal-Juhasz inequality. CANADIAN MATHEMATICAL BULLETIN, 63(1), 197-203 [10.4153/S0008439519000420].

A common extension of Arhangel'skii's Theorem and the Hajnal-Juhasz inequality

Santi Spadaro
2020

Abstract

We present a bound for the weak Lindelöf number of the Gδ-modification of a Hausdorff space which implies various known cardinal inequalities, including the following two fundamental results in the theory of cardinal invariants in topology: |X|≤2^{L(X)χ(X)} (Arhangel'skii) and |X|≤2^{c(X)χ(X)} (Hajnal-Juhasz). This solves a question that goes back to Bell, Ginsburg and Woods and is mentioned in Hodel's survey on Arhangel'skii's Theorem. In contrast to previous attempts we do not need any separation axiom beyond T2.
Settore MAT/03 - Geometria
Angelo Bella, & Santi Spadaro (2020). A common extension of Arhangel'skii's Theorem and the Hajnal-Juhasz inequality. CANADIAN MATHEMATICAL BULLETIN, 63(1), 197-203 [10.4153/S0008439519000420].
File in questo prodotto:
File Dimensione Formato  
CommonExtension.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Pre-print
Dimensione 139.96 kB
Formato Adobe PDF
139.96 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/10447/480974
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
social impact