In this paper we investigate the problem of measuring social mobility when the social status of individuals is given by their rank. In order to sensibly rep- resent the rank mobility of subgroups within a given society, we address the problem in terms of partial permutation matrices which include standard (“global”) matrices as a special case. We first provide a characterization of a partial ordering on partial matrices which, in the standard case of global matrices, coincides with the well-known “concordance” ordering. We then provide a characterization of an index of rank mo- bility based on partial matrices and show that, in the standard case of comparing two global matrices, it is equivalent to Spearman’s ρ index.
D'Agostino, M., Dardanoni, V. (2009). What's So Speciall About Euclidean Distance? A Characterization Result with Applications to Mobility and Spatial Voting. SOCIAL CHOICE AND WELFARE, 2009.
What's So Speciall About Euclidean Distance? A Characterization Result with Applications to Mobility and Spatial Voting
DARDANONI, Valentino
2009-01-01
Abstract
In this paper we investigate the problem of measuring social mobility when the social status of individuals is given by their rank. In order to sensibly rep- resent the rank mobility of subgroups within a given society, we address the problem in terms of partial permutation matrices which include standard (“global”) matrices as a special case. We first provide a characterization of a partial ordering on partial matrices which, in the standard case of global matrices, coincides with the well-known “concordance” ordering. We then provide a characterization of an index of rank mo- bility based on partial matrices and show that, in the standard case of comparing two global matrices, it is equivalent to Spearman’s ρ index.File | Dimensione | Formato | |
---|---|---|---|
355_2008_353_Author.pdf
Solo gestori archvio
Dimensione
490.28 kB
Formato
Adobe PDF
|
490.28 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.