We propose to characterize Lévy-distributed stochastic fluctuations through the measurement of the average voltage drop across a current-biased Josephson junction.We show that the noise induced switching process in the Josephson washboard potential can be exploited to reveal and characterize Lévy fluctuations, also if embedded in a thermal noisy background. The measurement of the average voltage drop as a function of the noise intensity allows to infer the value of the stability index that characterizes Lévy-distributed fluctuations. An analytical estimate of the average velocity in the case of a Lévy-driven escape process from a metastable state well agrees with the numerical calculation of the average voltage drop across the junction. The best performances are reached at small bias currents and low temperatures, i.e., when both thermally activated and quantum tunneling switching processes can be neglected. The effects discussed in this work pave the way toward an effective and reliable method to characterize Lévy components eventually present in an unknown noisy signal.

Guarcello, C., Filatrella, G., Spagnolo, B., Pierro, V., Valenti, D. (2020). Voltage drop across Josephson junctions for Lévy noise detection. PHYSICAL REVIEW RESEARCH, 2(4), 043332-1-043332-11 [10.1103/PhysRevResearch.2.043332].

Voltage drop across Josephson junctions for Lévy noise detection

Guarcello, Claudio
;
Spagnolo, Bernardo;Valenti, Davide
2020-12-07

Abstract

We propose to characterize Lévy-distributed stochastic fluctuations through the measurement of the average voltage drop across a current-biased Josephson junction.We show that the noise induced switching process in the Josephson washboard potential can be exploited to reveal and characterize Lévy fluctuations, also if embedded in a thermal noisy background. The measurement of the average voltage drop as a function of the noise intensity allows to infer the value of the stability index that characterizes Lévy-distributed fluctuations. An analytical estimate of the average velocity in the case of a Lévy-driven escape process from a metastable state well agrees with the numerical calculation of the average voltage drop across the junction. The best performances are reached at small bias currents and low temperatures, i.e., when both thermally activated and quantum tunneling switching processes can be neglected. The effects discussed in this work pave the way toward an effective and reliable method to characterize Lévy components eventually present in an unknown noisy signal.
Settore FIS/02 - Fisica Teorica, Modelli E Metodi Matematici
Guarcello, C., Filatrella, G., Spagnolo, B., Pierro, V., Valenti, D. (2020). Voltage drop across Josephson junctions for Lévy noise detection. PHYSICAL REVIEW RESEARCH, 2(4), 043332-1-043332-11 [10.1103/PhysRevResearch.2.043332].
File in questo prodotto:
File Dimensione Formato  
Phys_Rev_Research_2_043332_2020.pdf

accesso aperto

Descrizione: Articolo completo
Tipologia: Versione Editoriale
Dimensione 1.3 MB
Formato Adobe PDF
1.3 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/474984
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 10
social impact