A reexamination of proteins with conserved cysteines and basic amino acids encoded by the 3′-proximal gene of the positive-sense single-stranded RNA of some monopartite filamentous plant viruses has been carried out. The cysteines are involved in a putative Zn-finger domain, which, together with the basic amino acids, form part of the nuclear or nucleolar localization signals. An in-depth study of one of these proteins, p15 from grapevine B virus (GVB), has shown: (i) a three-dimensional structure with four α-helices predicted by two independent in silico approaches, (ii) the nucleolus as the main accumulation site by applying confocal laser microscopy to a fusion between p15 and the green fluorescent protein, (iii) the involvement of the basic amino acids and the putative Zn-finger domain, mapping at the N-terminal region of p15, in the nucleolar localization signal, as revealed by the effect of six alanine substitution mutations, (iv) the p15 suppressor function of sense-mediated RNA silencing as revealed by agroinfiltration in a transgenic line of Nicotiana benthamiana, and (v) the enhancer activity of p15 on viral pathogenicity in N. benthamiana when expressed from a potato virus X vector. In addition, we elaborate on an evolutionary scenario for these filamentous viruses, invoking takeover by a common ancestor(s) of viral or host genes coding for those cysteine-rich proteins, followed by divergence, which would also explain why they are encoded in the 3′-proximal gene of the genomic single-stranded viral RNA.
Davino S., Ruiz-Ruiz S., Serra P., Forment J., & Flores R. (2020). Revisiting the cysteine-rich proteins encoded in the 3’-proximal open reading frame of the positive-sense single-stranded RNA of some monopartite filamentous plant viruses: functional dissection of p15 from grapevine virus B. ARCHIVES OF VIROLOGY, 165(10), 2229-2239 [10.1007/s00705-020-04729-w].
Data di pubblicazione: | 2020 | |
Titolo: | Revisiting the cysteine-rich proteins encoded in the 3’-proximal open reading frame of the positive-sense single-stranded RNA of some monopartite filamentous plant viruses: functional dissection of p15 from grapevine virus B | |
Autori: | ||
Citazione: | Davino S., Ruiz-Ruiz S., Serra P., Forment J., & Flores R. (2020). Revisiting the cysteine-rich proteins encoded in the 3’-proximal open reading frame of the positive-sense single-stranded RNA of some monopartite filamentous plant viruses: functional dissection of p15 from grapevine virus B. ARCHIVES OF VIROLOGY, 165(10), 2229-2239 [10.1007/s00705-020-04729-w]. | |
Rivista: | ||
Digital Object Identifier (DOI): | http://dx.doi.org/10.1007/s00705-020-04729-w | |
Abstract: | A reexamination of proteins with conserved cysteines and basic amino acids encoded by the 3′-proximal gene of the positive-sense single-stranded RNA of some monopartite filamentous plant viruses has been carried out. The cysteines are involved in a putative Zn-finger domain, which, together with the basic amino acids, form part of the nuclear or nucleolar localization signals. An in-depth study of one of these proteins, p15 from grapevine B virus (GVB), has shown: (i) a three-dimensional structure with four α-helices predicted by two independent in silico approaches, (ii) the nucleolus as the main accumulation site by applying confocal laser microscopy to a fusion between p15 and the green fluorescent protein, (iii) the involvement of the basic amino acids and the putative Zn-finger domain, mapping at the N-terminal region of p15, in the nucleolar localization signal, as revealed by the effect of six alanine substitution mutations, (iv) the p15 suppressor function of sense-mediated RNA silencing as revealed by agroinfiltration in a transgenic line of Nicotiana benthamiana, and (v) the enhancer activity of p15 on viral pathogenicity in N. benthamiana when expressed from a potato virus X vector. In addition, we elaborate on an evolutionary scenario for these filamentous viruses, invoking takeover by a common ancestor(s) of viral or host genes coding for those cysteine-rich proteins, followed by divergence, which would also explain why they are encoded in the 3′-proximal gene of the genomic single-stranded viral RNA. | |
Settore Scientifico Disciplinare: | Settore AGR/12 - Patologia Vegetale | |
Appare nelle tipologie: | 1.01 Articolo in rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
Davino_2020_Archives_Viology.pdf | Articolo principale | Versione Editoriale | Administrator Richiedi una copia |