Co-doped Ce3+, Cr3+ and Pr3+ yttrium–aluminium–gallium garnet powders of various sizes were obtained by co-precipitation method. The microstructure and morphology were investigated by XRPD, TEM and gas porosimetry. The luminescence properties were studied by excitation and emission spectra, quantum yield and decay times. Thermoluminescence measurements were performed to evaluate the activation energy, traps redistribution and frequency factor. Limitation in the energy transfer between dopant ions in the small particles, traps depth and surface defects were considered and investigated as responsible for the quenching of persistent luminescence. The phosphors annealed at 1100 °C show the optimal persistent luminescence and nano-particle size.
Boiko V., Dai Z., Markowska M., Leonelli C., Mortalo C., Armetta F., et al. (2021). Particle size-related limitations of persistent phosphors based on the doped Y3Al2Ga3O12 system. SCIENTIFIC REPORTS, 11(1), 1-14 [10.1038/s41598-020-80335-9].
Particle size-related limitations of persistent phosphors based on the doped Y3Al2Ga3O12 system
Armetta F.;Ursi F.;Nasillo G.;Saladino M. L.
;
2021-01-01
Abstract
Co-doped Ce3+, Cr3+ and Pr3+ yttrium–aluminium–gallium garnet powders of various sizes were obtained by co-precipitation method. The microstructure and morphology were investigated by XRPD, TEM and gas porosimetry. The luminescence properties were studied by excitation and emission spectra, quantum yield and decay times. Thermoluminescence measurements were performed to evaluate the activation energy, traps redistribution and frequency factor. Limitation in the energy transfer between dopant ions in the small particles, traps depth and surface defects were considered and investigated as responsible for the quenching of persistent luminescence. The phosphors annealed at 1100 °C show the optimal persistent luminescence and nano-particle size.File | Dimensione | Formato | |
---|---|---|---|
s41598-020-80335-9.pdf
accesso aperto
Tipologia:
Versione Editoriale
Dimensione
6.42 MB
Formato
Adobe PDF
|
6.42 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.