Eco-friendly in-situ stabilised biopolymer nanocomposites based on polyamide 11 (PA11) and polylactic acid (PLA) were prepared by melt mixing in the presence of a modified organo-montmorillonite clay containing a chemically-bound hindered amine UV-stabilising function, [(UV)OM-MMt]. Characterisation of the newly synthesised organo-modifier containing the reactive hindered amine (HAS) UV-stabilising function [(UV)OM] has confirmed a successful synthesis. The (UV)OM was then introduced into NaMMt through ion exchange reaction to prepare the UV stabiliser-bound organo-modified-MMt, [(UV)OM-MMt]. The in-situ stabilised PA11- and PLA- nanocomposites (PA11-(UV)OM-MMt and PLA-(UV)OM-MMt) were characterised and their photoxidative stabilities (under accelerated weathering conditions) were compared with their nanocomposite analogues containing either the organo-modified MMt (OM-MMt) alone (i.e. without UV-stabiliser) or the OM-MMT containing conventionally added commercial hindered amine HAS-UV-stabiliser (Cyasorb® UV-3853). It was found that both of the newly prepared in-situ stabilised PA11- and PLA- nanocomposites gave good clay dispersion and have demonstrated a much higher, especially in PLA-nanocomposites, photo-oxidative stability compared to the corresponding nanocomposites but in the absence, or the presence, of the conventionally added HAS-UV-stabiliser.

Dintcheva N.T., Al-Malaika S. (2020). Photo-stabilization of biopolymers-based nanocomposites with UV-modified layered silicates. POLYMER DEGRADATION AND STABILITY, 179 [10.1016/j.polymdegradstab.2020.109252].

Photo-stabilization of biopolymers-based nanocomposites with UV-modified layered silicates

Dintcheva N. T.
;
2020-01-01

Abstract

Eco-friendly in-situ stabilised biopolymer nanocomposites based on polyamide 11 (PA11) and polylactic acid (PLA) were prepared by melt mixing in the presence of a modified organo-montmorillonite clay containing a chemically-bound hindered amine UV-stabilising function, [(UV)OM-MMt]. Characterisation of the newly synthesised organo-modifier containing the reactive hindered amine (HAS) UV-stabilising function [(UV)OM] has confirmed a successful synthesis. The (UV)OM was then introduced into NaMMt through ion exchange reaction to prepare the UV stabiliser-bound organo-modified-MMt, [(UV)OM-MMt]. The in-situ stabilised PA11- and PLA- nanocomposites (PA11-(UV)OM-MMt and PLA-(UV)OM-MMt) were characterised and their photoxidative stabilities (under accelerated weathering conditions) were compared with their nanocomposite analogues containing either the organo-modified MMt (OM-MMt) alone (i.e. without UV-stabiliser) or the OM-MMT containing conventionally added commercial hindered amine HAS-UV-stabiliser (Cyasorb® UV-3853). It was found that both of the newly prepared in-situ stabilised PA11- and PLA- nanocomposites gave good clay dispersion and have demonstrated a much higher, especially in PLA-nanocomposites, photo-oxidative stability compared to the corresponding nanocomposites but in the absence, or the presence, of the conventionally added HAS-UV-stabiliser.
2020
Settore ING-IND/22 - Scienza E Tecnologia Dei Materiali
Dintcheva N.T., Al-Malaika S. (2020). Photo-stabilization of biopolymers-based nanocomposites with UV-modified layered silicates. POLYMER DEGRADATION AND STABILITY, 179 [10.1016/j.polymdegradstab.2020.109252].
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0141391020301841-main.pdf

Solo gestori archvio

Tipologia: Versione Editoriale
Dimensione 5.03 MB
Formato Adobe PDF
5.03 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/464200
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact