Background: Until few years ago, all neoplastic cells within a tumour were suggested to have tumorigenic capacity, but recent evidences hint to the possibility that such feature is confined to a subset of Cancer Initiating Cells (CICs), also called Cancer Stem Cells (CSCs). These cells are the reservoir of the heterogeneous populations of differentiated cancer cells constituting the tumour bulk. Mechanisms shared with somatic stem cells, such as quiescence, self-renewal ability, asymmetric division and multidrug resistance, allow to these cells to drive tumour growth and to evade conventional therapy. Objective: Here, we give a brief overview on the origin of CICs, the mechanisms involved in chemoresistance and therapeutic implications. Conclusion: Current cancer treatments, based on the assumption that tumour cell population responds homogeneously, have been developed to eradicate proliferating cells. The new model of tumorigenesis entails significant therapeutic implications, in fact if a small fraction of CICs survives conventional therapy it may lead to recurrence after month or years of apparent remission. Selective targeting of CICs could eliminate the tumour from the root, overcoming the emergence of clones capable of evading traditional therapy and increasing overall disease free survival.
Scopelliti, A., Cammareri, P., Catalano, V., Saladino, V., Todaro, M., Stassi, G. (2009). Therapeutic implications of Cancer Initiating Cells. EXPERT OPINION ON BIOLOGICAL THERAPY, 9(8), 1005-1016 [10.1517/14712590903066687].
Therapeutic implications of Cancer Initiating Cells.
TODARO, Matilde;STASSI, Giorgio;CATALANO, Veronica
2009-01-01
Abstract
Background: Until few years ago, all neoplastic cells within a tumour were suggested to have tumorigenic capacity, but recent evidences hint to the possibility that such feature is confined to a subset of Cancer Initiating Cells (CICs), also called Cancer Stem Cells (CSCs). These cells are the reservoir of the heterogeneous populations of differentiated cancer cells constituting the tumour bulk. Mechanisms shared with somatic stem cells, such as quiescence, self-renewal ability, asymmetric division and multidrug resistance, allow to these cells to drive tumour growth and to evade conventional therapy. Objective: Here, we give a brief overview on the origin of CICs, the mechanisms involved in chemoresistance and therapeutic implications. Conclusion: Current cancer treatments, based on the assumption that tumour cell population responds homogeneously, have been developed to eradicate proliferating cells. The new model of tumorigenesis entails significant therapeutic implications, in fact if a small fraction of CICs survives conventional therapy it may lead to recurrence after month or years of apparent remission. Selective targeting of CICs could eliminate the tumour from the root, overcoming the emergence of clones capable of evading traditional therapy and increasing overall disease free survival.File | Dimensione | Formato | |
---|---|---|---|
Scopelliti et al..pdf
Solo gestori archvio
Dimensione
790.01 kB
Formato
Adobe PDF
|
790.01 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.