We consider a parametric nonlinear Robin problem driven by the negative p-Laplacian plus an indefinite potential. The equation can be thought as a perturbation of the usual eigenvalue problem. We consider the case where the perturbation f(z, ·) is (p- 1) -sublinear and then the case where it is (p- 1) -superlinear but without satisfying the Ambrosetti–Rabinowitz condition. We establish existence and uniqueness or multiplicity of positive solutions for certain admissible range for the parameter λ∈ R which we specify exactly in terms of principal eigenvalue of the differential operator.
Vetro C. (2020). Perturbed eigenvalue problems for the Robin p-Laplacian plus an indefinite potential. ANALYSIS AND MATHEMATICAL PHYSICS, 10(4), 1-34 [10.1007/s13324-020-00416-w].
Perturbed eigenvalue problems for the Robin p-Laplacian plus an indefinite potential
Vetro C.
2020-01-01
Abstract
We consider a parametric nonlinear Robin problem driven by the negative p-Laplacian plus an indefinite potential. The equation can be thought as a perturbation of the usual eigenvalue problem. We consider the case where the perturbation f(z, ·) is (p- 1) -sublinear and then the case where it is (p- 1) -superlinear but without satisfying the Ambrosetti–Rabinowitz condition. We establish existence and uniqueness or multiplicity of positive solutions for certain admissible range for the parameter λ∈ R which we specify exactly in terms of principal eigenvalue of the differential operator.File | Dimensione | Formato | |
---|---|---|---|
2020_AMP_Vetro.pdf
accesso aperto
Descrizione: Articolo principale
Tipologia:
Versione Editoriale
Dimensione
505.02 kB
Formato
Adobe PDF
|
505.02 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.