We investigate the large time behavior for the inhomogeneous damped wave equation with nonlinear memory φtt (t, ω) − ∆φ(t, ω) + φt (t, ω) =1 ∫t Γ(1−ρ) 0(t − σ)−ρ |φ(σ, ω)|q dσ + µ(ω), t > 0, ω ∈ RN imposing the condition (φ(0, ω), φt (0, ω)) = (φ0 (ω), φ1 (ω)) in RN, where N ≥ 1, q > 1, 0 < ρ < 1, φi ∈ L1loc(RN), i = 0, 1, µ ∈ L1loc(RN) and µ ̸≡ 0. Namely, it is shown that, if φ0, φ1 ≥ 0, ∫ µ ∈ L1 (RN) and µ(ω) dω > 0, then for all q > 1, the considered problem has no global RNweak solution.
Jleli M., Samet B., Vetro C. (2020). Large time behavior for inhomogeneous damped wave equations with nonlinear memory. SYMMETRY, 12(10), 1-12 [10.3390/sym12101609].
Large time behavior for inhomogeneous damped wave equations with nonlinear memory
Vetro C.
2020-01-01
Abstract
We investigate the large time behavior for the inhomogeneous damped wave equation with nonlinear memory φtt (t, ω) − ∆φ(t, ω) + φt (t, ω) =1 ∫t Γ(1−ρ) 0(t − σ)−ρ |φ(σ, ω)|q dσ + µ(ω), t > 0, ω ∈ RN imposing the condition (φ(0, ω), φt (0, ω)) = (φ0 (ω), φ1 (ω)) in RN, where N ≥ 1, q > 1, 0 < ρ < 1, φi ∈ L1loc(RN), i = 0, 1, µ ∈ L1loc(RN) and µ ̸≡ 0. Namely, it is shown that, if φ0, φ1 ≥ 0, ∫ µ ∈ L1 (RN) and µ(ω) dω > 0, then for all q > 1, the considered problem has no global RNweak solution.File | Dimensione | Formato | |
---|---|---|---|
symmetry-12-01609-v2 (1).pdf
accesso aperto
Descrizione: Articolo principale
Tipologia:
Versione Editoriale
Dimensione
288.17 kB
Formato
Adobe PDF
|
288.17 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.