Recognizing users’ daily life activities without disrupting their lifestyle is a key functionality to enable a broad variety of advanced services for a Smart City, from energy-efficient management of urban spaces to mobility optimization. In this paper, we propose a novel method for human activity recognition from a collection of outdoor mobility traces acquired through wearable devices. Our method exploits the regularities naturally present in human mobility patterns to construct syntactic models in the form of finite state automata, thanks to an approach known as grammatical inference. We also introduce a measure of similarity that accounts for the intrinsic hierarchical nature of such models, and allows to identify the common traits in the paths induced by different activities at various granularity levels. Our method has been validated on a dataset of real traces representing movements of users in a large metropolitan area. The experimental results show the effectiveness of our similarity measure to correctly identify a set of common coarse-grained activities, as well as their refinement at a finer level of granularity.

Casella E., Ortolani M., Silvestri S., & Das S.K. (2020). Hierarchical syntactic models for human activity recognition through mobility traces. PERSONAL AND UBIQUITOUS COMPUTING, 24(4), 451-464 [10.1007/s00779-019-01319-9].

Hierarchical syntactic models for human activity recognition through mobility traces

Ortolani M.
;
2020

Abstract

Recognizing users’ daily life activities without disrupting their lifestyle is a key functionality to enable a broad variety of advanced services for a Smart City, from energy-efficient management of urban spaces to mobility optimization. In this paper, we propose a novel method for human activity recognition from a collection of outdoor mobility traces acquired through wearable devices. Our method exploits the regularities naturally present in human mobility patterns to construct syntactic models in the form of finite state automata, thanks to an approach known as grammatical inference. We also introduce a measure of similarity that accounts for the intrinsic hierarchical nature of such models, and allows to identify the common traits in the paths induced by different activities at various granularity levels. Our method has been validated on a dataset of real traces representing movements of users in a large metropolitan area. The experimental results show the effectiveness of our similarity measure to correctly identify a set of common coarse-grained activities, as well as their refinement at a finer level of granularity.
Settore ING-INF/05 - Sistemi Di Elaborazione Delle Informazioni
https://link.springer.com/article/10.1007/s00779-019-01319-9
Casella E., Ortolani M., Silvestri S., & Das S.K. (2020). Hierarchical syntactic models for human activity recognition through mobility traces. PERSONAL AND UBIQUITOUS COMPUTING, 24(4), 451-464 [10.1007/s00779-019-01319-9].
File in questo prodotto:
File Dimensione Formato  
pauc_accepted_iris.pdf

accesso aperto

Tipologia: Post-print
Dimensione 1.82 MB
Formato Adobe PDF
1.82 MB Adobe PDF Visualizza/Apri
Casella2020_Article_HierarchicalSyntacticModelsFor (1).pdf

accesso aperto

Tipologia: Versione Editoriale
Dimensione 2.39 MB
Formato Adobe PDF
2.39 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/10447/438948
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact