The efficiency of transport through Band 3 protein, mediating HCO3–/Cl– exchange across erythrocytes membrane, is reduced by oxidative stress. The aim of the present study was to verify whether Band 3 protein transport efficiency is compromised by treatment with Cadmium (Cd2+), an extremely toxic heavy metal known to interfere with antioxidant enzymes, energy metabolism, gene expression and cell membranes. To this end, the rate constant for SO4= uptake through Band 3 protein (accounting for velocity of anion exchange) was measured along with membrane –SH groups, Malonyldialdehyde (MDA) and Band 3 protein expression levels in Cd2+-treated human erythrocytes (300 μM, 1 mM). Our results show that Cd2+ reduced the rate constant for SO4= uptake, with a significant increase in MDA levels at both concentrations and with a reduction in –SH groups observed after 1 mM Cd2+ treatment, whereas Band 3 protein expression levels were unchanged in both conditions. In conclusion: i) Cd2+ reduces Band 3 protein transport efficiency via different mechanisms depending on metal concentration and with unchanged expression levels; ii) the assessment of Band 3 protein anion exchange capability is a good tool to assay the impact of heavy metals on cell homeostasis and, possibly, useful for diagnosis and monitoring of development of Cd2+ toxicity-related pathologies.
Morabito R, R.A. (2018). Effect of cadmium on anion exchange capability through Band 3 protein in human erythrocytes. JOURNAL OF BIOLOGICAL RESEARCH, 91(7203), 1-7 [10.4081/jbr.2018.7203].
Effect of cadmium on anion exchange capability through Band 3 protein in human erythrocytes
Giammanco MSupervision
;
2018-01-01
Abstract
The efficiency of transport through Band 3 protein, mediating HCO3–/Cl– exchange across erythrocytes membrane, is reduced by oxidative stress. The aim of the present study was to verify whether Band 3 protein transport efficiency is compromised by treatment with Cadmium (Cd2+), an extremely toxic heavy metal known to interfere with antioxidant enzymes, energy metabolism, gene expression and cell membranes. To this end, the rate constant for SO4= uptake through Band 3 protein (accounting for velocity of anion exchange) was measured along with membrane –SH groups, Malonyldialdehyde (MDA) and Band 3 protein expression levels in Cd2+-treated human erythrocytes (300 μM, 1 mM). Our results show that Cd2+ reduced the rate constant for SO4= uptake, with a significant increase in MDA levels at both concentrations and with a reduction in –SH groups observed after 1 mM Cd2+ treatment, whereas Band 3 protein expression levels were unchanged in both conditions. In conclusion: i) Cd2+ reduces Band 3 protein transport efficiency via different mechanisms depending on metal concentration and with unchanged expression levels; ii) the assessment of Band 3 protein anion exchange capability is a good tool to assay the impact of heavy metals on cell homeostasis and, possibly, useful for diagnosis and monitoring of development of Cd2+ toxicity-related pathologies.File | Dimensione | Formato | |
---|---|---|---|
Effect_of_cadmium_on_anion_exchange_capability_through_Band_3_protein_in (3).pdf
accesso aperto
Descrizione: Effect of cadmium on anion exchange capability through Band 3 protein in human erythrocytes
Tipologia:
Versione Editoriale
Dimensione
546.49 kB
Formato
Adobe PDF
|
546.49 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.