This paper is concerned with the nonexistence of global solutions to fractional in time nonlinear Schrödinger equations of the form iα∂αtω(t,z)+a1(t)Δω(t,z)+iαa2(t)ω(t,z)=ξ|ω(t,z)|p,(t,z)∈(0,∞)×RN , where N≥1 , ξ∈C{0} and p>1 , under suitable initial data. To establish our nonexistence theorem, we adopt the Pohozaev nonlinear capacity method, and consider the combined effects of absorption and dispersion terms. Further, we discuss in details some special cases of coefficient functions a1,a2∈L1loc([0,∞),R) , and provide two illustrative examples.
Jleli, M. (2020). On a fractional in time nonlinear Schrödinger equation with dispersion parameter and absorption coefficient. SYMMETRY, 12(7), 1-13 [10.3390/sym12071197].
On a fractional in time nonlinear Schrödinger equation with dispersion parameter and absorption coefficient
Vetro C
2020-01-01
Abstract
This paper is concerned with the nonexistence of global solutions to fractional in time nonlinear Schrödinger equations of the form iα∂αtω(t,z)+a1(t)Δω(t,z)+iαa2(t)ω(t,z)=ξ|ω(t,z)|p,(t,z)∈(0,∞)×RN , where N≥1 , ξ∈C{0} and p>1 , under suitable initial data. To establish our nonexistence theorem, we adopt the Pohozaev nonlinear capacity method, and consider the combined effects of absorption and dispersion terms. Further, we discuss in details some special cases of coefficient functions a1,a2∈L1loc([0,∞),R) , and provide two illustrative examples.File | Dimensione | Formato | |
---|---|---|---|
symmetry-12-01197-v2.pdf
accesso aperto
Descrizione: Articolo principale
Tipologia:
Versione Editoriale
Dimensione
287.18 kB
Formato
Adobe PDF
|
287.18 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.