In the last decades, an increase of energy consumption has been noted around the world. Hence, the excessive use of fossil fuels can lead to serious environmental concerns. Indeed, the use of renewable energy sources is needed to reduce the greenhouse gas effects and the CO2 emissions in the atmosphere. Small-scale hydropower could be an interesting and renewable alternative solution. The cross-flow turbines present several advantages compared to the axial-flow turbines. Therefore, increasing efforts are taken to enhance the efficiency and extend the applicability of the cross-flow turbines. In this paper, experimental investigation was carried out to evaluate the performance of a delta blades turbine with leading edge sweep angle equal to γ=30°. The experimental investigation was conducted in an irrigation channel characterized by a water current of constant velocity equal to =0.86 m.s-1. In addition, numerical study was carried out to analyze the effect of the leading edge sweep angle on the performance of the delta blades turbine and the hydrodynamic characteristics of the flow around the turbine. Numerical findings confirm that the leading edge sweep angle has an impact on turbine efficiency and the hydrodynamic characteristics of the flow around the turbine.

Mosbahi, M., Ayadi, A., Chouaibi, Y., Driss, Z., & Tucciarelli, T. (2020). Experimental and numerical investigation of the leading edge sweep angle effect on the performance of a delta blades hydrokinetic turbine. RENEWABLE ENERGY, 162, 1087-1103 [10.1016/j.renene.2020.08.105].

Experimental and numerical investigation of the leading edge sweep angle effect on the performance of a delta blades hydrokinetic turbine

Tucciarelli, Tullio
2020

Abstract

In the last decades, an increase of energy consumption has been noted around the world. Hence, the excessive use of fossil fuels can lead to serious environmental concerns. Indeed, the use of renewable energy sources is needed to reduce the greenhouse gas effects and the CO2 emissions in the atmosphere. Small-scale hydropower could be an interesting and renewable alternative solution. The cross-flow turbines present several advantages compared to the axial-flow turbines. Therefore, increasing efforts are taken to enhance the efficiency and extend the applicability of the cross-flow turbines. In this paper, experimental investigation was carried out to evaluate the performance of a delta blades turbine with leading edge sweep angle equal to γ=30°. The experimental investigation was conducted in an irrigation channel characterized by a water current of constant velocity equal to =0.86 m.s-1. In addition, numerical study was carried out to analyze the effect of the leading edge sweep angle on the performance of the delta blades turbine and the hydrodynamic characteristics of the flow around the turbine. Numerical findings confirm that the leading edge sweep angle has an impact on turbine efficiency and the hydrodynamic characteristics of the flow around the turbine.
Settore ICAR/01 - Idraulica
Mosbahi, M., Ayadi, A., Chouaibi, Y., Driss, Z., & Tucciarelli, T. (2020). Experimental and numerical investigation of the leading edge sweep angle effect on the performance of a delta blades hydrokinetic turbine. RENEWABLE ENERGY, 162, 1087-1103 [10.1016/j.renene.2020.08.105].
File in questo prodotto:
File Dimensione Formato  
paper.pdf

Solo gestori archvio

Descrizione: Articolo principale
Tipologia: Versione Editoriale
Dimensione 8.27 MB
Formato Adobe PDF
8.27 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/10447/431810
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 8
social impact