This paper presents the results of a study on the geochemistry of waters circulating in the mineralised area of the south-eastern sector of Mt. Peloritani (north-eastern Sicily, Italy), aimed at basic understanding of the geochemical processes influencing their chemical composition. Chemico-physical parameters and data on 26 major and minor chemical elements are reported for 103 water samples. Water chemistry is mainly dominated by dissolution of carbonates and hydrolysis of aluminosilicate minerals. Total dissolved salts (TDS) range from 80 to 1398 mg/L. All the waters exhibit EH characteristic of an oxygenated environment. Excluding two samples, which show very high H+ activity (pH = 3.0 and 2.7), all the waters have pH values in the range 6.2–8.6. Cluster analysis based on major ion contents defined three main chemical water types, reflecting different hydrochemical processes. The first, group I, has low salinity (average TDS = 118 ± 30 mg/L) and abundance orders (meq/L) Na > Ca Mg > K and Cl HCO3 > SO4. With increased water–rock interaction, waters in groups II and III become more saline, changing composition towards SO4–Cl-alkaline earth and HCO3-alkaline earth types. Weathering of carbonate minerals causes waters to become saturated with respect to calcite and dolomite, whereas the incongruent dissolution of aluminosilicate minerals causes the solution to reach equilibrium with kaolinite and to form smectites. Trace element geochemistry in the analysed waters reflects interactions between waters and existing mineralisation, with elemental concentrations showing highly variable values, and higher concentrations of As, Pb, Sb and Zn near known mineralisation. Lead–Zn and As–Sb statistical associations, probably distinguishing interactions with different mineralogical phase paragenesis, were revealed by factor analysis. The main aqueous chemical forms of trace elements predicted by chemical speciation calculations are also reported. As most of the analysed spring waters provide the main source of freshwater for domestic purposes, attention should be given to As and Sb, whose concentrations exceed the recommended limits.

DONGARRÀ, G., MANNO, E., SABATINO, G., & VARRICA, D. (2009). Geochemical characteristics of waters in mineralised area of Peloritani Mountains (Sicily, Italy). APPLIED GEOCHEMISTRY, 24, 900-914 [10.1016/j.apgeochem.2009.02.002].

Geochemical characteristics of waters in mineralised area of Peloritani Mountains (Sicily, Italy)

DONGARRA', Gaetano;MANNO, Emanuela;VARRICA, Daniela
2009

Abstract

This paper presents the results of a study on the geochemistry of waters circulating in the mineralised area of the south-eastern sector of Mt. Peloritani (north-eastern Sicily, Italy), aimed at basic understanding of the geochemical processes influencing their chemical composition. Chemico-physical parameters and data on 26 major and minor chemical elements are reported for 103 water samples. Water chemistry is mainly dominated by dissolution of carbonates and hydrolysis of aluminosilicate minerals. Total dissolved salts (TDS) range from 80 to 1398 mg/L. All the waters exhibit EH characteristic of an oxygenated environment. Excluding two samples, which show very high H+ activity (pH = 3.0 and 2.7), all the waters have pH values in the range 6.2–8.6. Cluster analysis based on major ion contents defined three main chemical water types, reflecting different hydrochemical processes. The first, group I, has low salinity (average TDS = 118 ± 30 mg/L) and abundance orders (meq/L) Na > Ca Mg > K and Cl HCO3 > SO4. With increased water–rock interaction, waters in groups II and III become more saline, changing composition towards SO4–Cl-alkaline earth and HCO3-alkaline earth types. Weathering of carbonate minerals causes waters to become saturated with respect to calcite and dolomite, whereas the incongruent dissolution of aluminosilicate minerals causes the solution to reach equilibrium with kaolinite and to form smectites. Trace element geochemistry in the analysed waters reflects interactions between waters and existing mineralisation, with elemental concentrations showing highly variable values, and higher concentrations of As, Pb, Sb and Zn near known mineralisation. Lead–Zn and As–Sb statistical associations, probably distinguishing interactions with different mineralogical phase paragenesis, were revealed by factor analysis. The main aqueous chemical forms of trace elements predicted by chemical speciation calculations are also reported. As most of the analysed spring waters provide the main source of freshwater for domestic purposes, attention should be given to As and Sb, whose concentrations exceed the recommended limits.
Settore GEO/08 - Geochimica E Vulcanologia
DONGARRÀ, G., MANNO, E., SABATINO, G., & VARRICA, D. (2009). Geochemical characteristics of waters in mineralised area of Peloritani Mountains (Sicily, Italy). APPLIED GEOCHEMISTRY, 24, 900-914 [10.1016/j.apgeochem.2009.02.002].
File in questo prodotto:
File Dimensione Formato  
Geochemical characteristics of waters in mineralised area of Peloritani.pdf

non disponibili

Dimensione 1.63 MB
Formato Adobe PDF
1.63 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/10447/43164
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 19
social impact