The paper presents a methodology aimed at the improvement of the product development cycle through the integration of Computer-Aided Innovation (CAI) with Optimization and PLM systems. The interoperability of these tools is obtained through the adoption of Optimization systems as a bridging element between CAI and PLM systems. This methodology was developed within the PROSIT project (http://www.kaemart.it/prosit). The paper describes the main issues related to the integration of these complementary instruments and the solutions proposed by the authors. More specifically, the main idea of the PROSIT project to link CAI and Optimization systems is the adoption of the latter tools not just to generate optimized solutions, but also as a design analysis tool, capable to outline critical aspects of a mechanical component in terms of conflicting design requirements or parameters. CAI systems are then applied to overcome the contradictory requirements. The second step, i.e. the integration between Optimization and PLM systems, has been obtained through the development of Knowledge-Based (KB) tools to support designer’s activities. More in details, they provide means to analyze and extrapolate useful geometrical information from the results provided by the optimizer, as well as semi-automatic modelling features for some specific geometries. A detailed example related to the design of a plastic wheel for light motoscooters clarifies the whole procedure. The paper integrates, extends and updates topics presented in Cugini et al., Barbieri et al. and Cascini et al. [U. Cugini, G. Cascini, M. Ugolotti, Enhancing interoperability in the design process—the PROSIT approach, in: Proceedings of the 2nd IFIP Working Conference on Computer-Aided Innovation, Brighton (MI), USA, October 8–9, 2007, published on Trends in Computer- Aided Innovation, Springer, ISBN 978-0-387-75455-0, pp. 189–200; L. Barbieri, F. Bruno, M. Muzzupappa, U. Cugini, Design automation tools as a support for knowledge management in topology optimization, in: Proceedings of the ASME 2008 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference (IDETC/CIE 2008), Brooklyn, New York, USA, August 3–6, 2008; L. Barbieri, F. Bruno, M. Muzzupappa, U. Cugini, Guidelines for an efficient integration of topological optimization tools in the product development process, in: Third International Conference on Design Computing and Cognition, Atlanta, USA, June 23–25, 2008; G. Cascini, P. Rissone, F. Rotini, From design optimization systems to geometrical contradictions, in: Proceedings of the 7th ETRIA TRIZ Future Conference, Frankfurt, Germany, November 6–8, 2007].

Cugini, U., Cascini, G., Muzzupappa, M., Nigrelli, V. (2009). Integrated Computer-Aided Innovation: The PROSIT approach. COMPUTERS IN INDUSTRY, 60, 629-641 [10.1016/j.compind.2009.05.014].

Integrated Computer-Aided Innovation: The PROSIT approach

NIGRELLI, Vincenzo
2009-01-01

Abstract

The paper presents a methodology aimed at the improvement of the product development cycle through the integration of Computer-Aided Innovation (CAI) with Optimization and PLM systems. The interoperability of these tools is obtained through the adoption of Optimization systems as a bridging element between CAI and PLM systems. This methodology was developed within the PROSIT project (http://www.kaemart.it/prosit). The paper describes the main issues related to the integration of these complementary instruments and the solutions proposed by the authors. More specifically, the main idea of the PROSIT project to link CAI and Optimization systems is the adoption of the latter tools not just to generate optimized solutions, but also as a design analysis tool, capable to outline critical aspects of a mechanical component in terms of conflicting design requirements or parameters. CAI systems are then applied to overcome the contradictory requirements. The second step, i.e. the integration between Optimization and PLM systems, has been obtained through the development of Knowledge-Based (KB) tools to support designer’s activities. More in details, they provide means to analyze and extrapolate useful geometrical information from the results provided by the optimizer, as well as semi-automatic modelling features for some specific geometries. A detailed example related to the design of a plastic wheel for light motoscooters clarifies the whole procedure. The paper integrates, extends and updates topics presented in Cugini et al., Barbieri et al. and Cascini et al. [U. Cugini, G. Cascini, M. Ugolotti, Enhancing interoperability in the design process—the PROSIT approach, in: Proceedings of the 2nd IFIP Working Conference on Computer-Aided Innovation, Brighton (MI), USA, October 8–9, 2007, published on Trends in Computer- Aided Innovation, Springer, ISBN 978-0-387-75455-0, pp. 189–200; L. Barbieri, F. Bruno, M. Muzzupappa, U. Cugini, Design automation tools as a support for knowledge management in topology optimization, in: Proceedings of the ASME 2008 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference (IDETC/CIE 2008), Brooklyn, New York, USA, August 3–6, 2008; L. Barbieri, F. Bruno, M. Muzzupappa, U. Cugini, Guidelines for an efficient integration of topological optimization tools in the product development process, in: Third International Conference on Design Computing and Cognition, Atlanta, USA, June 23–25, 2008; G. Cascini, P. Rissone, F. Rotini, From design optimization systems to geometrical contradictions, in: Proceedings of the 7th ETRIA TRIZ Future Conference, Frankfurt, Germany, November 6–8, 2007].
2009
Settore ING-IND/15 - Disegno E Metodi Dell'Ingegneria Industriale
Cugini, U., Cascini, G., Muzzupappa, M., Nigrelli, V. (2009). Integrated Computer-Aided Innovation: The PROSIT approach. COMPUTERS IN INDUSTRY, 60, 629-641 [10.1016/j.compind.2009.05.014].
File in questo prodotto:
File Dimensione Formato  
JCI-CAI_prosit_final (1).pdf

accesso aperto

Dimensione 1.36 MB
Formato Adobe PDF
1.36 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/43163
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 21
social impact