The paper sets forth a new type of variational problem without any ellipticity or monotonicity condition. A prototype is a differential inclusion whose driving operator is the competing weighted (p, q)-Laplacian −∆p u + µ∆q u with µ ∈ R. Local and nonlocal boundary value problems fitting into this nonstandard setting are examined.

Liu Z., Livrea R., Motreanu D., Zeng S. (2020). Variational differential inclusions without ellipticity condition. ELECTRONIC JOURNAL ON THE QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2020(43), 1-17 [10.14232/ejqtde.2020.1.43].

Variational differential inclusions without ellipticity condition

Livrea R.;
2020-01-01

Abstract

The paper sets forth a new type of variational problem without any ellipticity or monotonicity condition. A prototype is a differential inclusion whose driving operator is the competing weighted (p, q)-Laplacian −∆p u + µ∆q u with µ ∈ R. Local and nonlocal boundary value problems fitting into this nonstandard setting are examined.
2020
Settore MAT/05 - Analisi Matematica
Liu Z., Livrea R., Motreanu D., Zeng S. (2020). Variational differential inclusions without ellipticity condition. ELECTRONIC JOURNAL ON THE QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2020(43), 1-17 [10.14232/ejqtde.2020.1.43].
File in questo prodotto:
File Dimensione Formato  
LiuLivMotZen-Online.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Versione Editoriale
Dimensione 466.74 kB
Formato Adobe PDF
466.74 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/429593
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
social impact