Anthropogenic activities are causing increased noise levels in the marine environment. To date, few studies have been undertaken to investigate the effects of different noise frequencies on the behaviour of juvenile fish. In this study, the behavioural changes of juvenile gilthead seabream (Sparus aurata) are evaluated when exposed to white noise filtered in third-octave bands centred at 63, 125, 500, and 1000 Hz (sound pressure level, 140–150 dB re 1 lPa) for 7 h. The group dispersion, motility, and swimming height of the fish were analysed before and during the acoustic emission. Dispersion of the fish was found to reduce immediately upon application of low frequency sound (63 and 125 Hz) with a return to control condition after 2 h (indicative of habituation), whereas at 1 kHz, dispersion increased after 2 h without any habituation. The motility decreased significantly at 63 Hz throughout the 7 h of sound exposure. The swimming height decreased significantly for all frequencies other than 125 Hz. The results of this study highlight significant variations in the behavioural responses of juvenile fish that could have consequences on their fitness and survival.
Manuela Mauro, I.P. (2020). The effect of low frequency noise on the behaviour of juvenile Sparus aurata. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 147(6), 3795-3807 [10.1121/10.0001255].
The effect of low frequency noise on the behaviour of juvenile Sparus aurata
Manuela Mauro;Mirella Vazzana;
2020-01-01
Abstract
Anthropogenic activities are causing increased noise levels in the marine environment. To date, few studies have been undertaken to investigate the effects of different noise frequencies on the behaviour of juvenile fish. In this study, the behavioural changes of juvenile gilthead seabream (Sparus aurata) are evaluated when exposed to white noise filtered in third-octave bands centred at 63, 125, 500, and 1000 Hz (sound pressure level, 140–150 dB re 1 lPa) for 7 h. The group dispersion, motility, and swimming height of the fish were analysed before and during the acoustic emission. Dispersion of the fish was found to reduce immediately upon application of low frequency sound (63 and 125 Hz) with a return to control condition after 2 h (indicative of habituation), whereas at 1 kHz, dispersion increased after 2 h without any habituation. The motility decreased significantly at 63 Hz throughout the 7 h of sound exposure. The swimming height decreased significantly for all frequencies other than 125 Hz. The results of this study highlight significant variations in the behavioural responses of juvenile fish that could have consequences on their fitness and survival.File | Dimensione | Formato | |
---|---|---|---|
Mauro 2020 .pdf
Solo gestori archvio
Descrizione: Articolo principale
Tipologia:
Versione Editoriale
Dimensione
2.64 MB
Formato
Adobe PDF
|
2.64 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
paper_sparus.pdf
accesso aperto
Tipologia:
Pre-print
Dimensione
2.68 MB
Formato
Adobe PDF
|
2.68 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.