Here we focus on the geometry of the “mirror quintic” Y and its generalizations. In particular, we illustrate how to obtain new birational models of Y . The article under review can be regarded as an announcement of or supplement to results in forthcoming papers of the author and his collaborators concerning quintic threefolds, the Dwork pencil, and its natural generalization to higher dimensions [G. Bini, “Quotients of hypersurfaces in weighted projective space”, preprint, arxiv.org/ abs/0905.2099, Adv. Geom., to appear; G. Bini, B. van Geemen and T. L. Kelly, “Mirror quintics, discrete symmetries and Shioda maps”, preprint, arxiv.org/abs/0809. 1791, J. Algebraic Geom., to appear; G. Bini and A. Garbagnati, “The geometry of the generalized Dwork pencil and its quotients”, in preparation].

G. Bini (2010). Some Remarks on Calabi-Yau Manifolds. RENDICONTI DI MATEMATICA E DELLE SUE APPLICAZIONI, 30(1), 33-45.

Some Remarks on Calabi-Yau Manifolds

G. Bini
2010-01-01

Abstract

Here we focus on the geometry of the “mirror quintic” Y and its generalizations. In particular, we illustrate how to obtain new birational models of Y . The article under review can be regarded as an announcement of or supplement to results in forthcoming papers of the author and his collaborators concerning quintic threefolds, the Dwork pencil, and its natural generalization to higher dimensions [G. Bini, “Quotients of hypersurfaces in weighted projective space”, preprint, arxiv.org/ abs/0905.2099, Adv. Geom., to appear; G. Bini, B. van Geemen and T. L. Kelly, “Mirror quintics, discrete symmetries and Shioda maps”, preprint, arxiv.org/abs/0809. 1791, J. Algebraic Geom., to appear; G. Bini and A. Garbagnati, “The geometry of the generalized Dwork pencil and its quotients”, in preparation].
Settore MAT/03 - Geometria
http://www.ams.org/mathscinet-getitem?mr=2682556
G. Bini (2010). Some Remarks on Calabi-Yau Manifolds. RENDICONTI DI MATEMATICA E DELLE SUE APPLICAZIONI, 30(1), 33-45.
File in questo prodotto:
File Dimensione Formato  
33-45.pdf

accesso aperto

Descrizione: articolo principale
Tipologia: Versione Editoriale
Dimensione 452.4 kB
Formato Adobe PDF
452.4 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/427987
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact