As pointed out in Arbarello and Cornalba ( J. Alg. Geom. 5 (1996), 705–749), a theorem due to Di Francesco, Itzykson, and Zuber (see Di Francesco, Itzykson, and Zuber, Commun. Math. Phys. 151 (1993), 193–219) should yield new relations among cohomology classes of the moduli space of pointed curves. The coefficients appearing in these new relations can be determined by the algorithm we introduce in this paper.

BINI G (2002). A combinatorial algorithm related to the geometry of the moduli space of pointed curves. JOURNAL OF ALGEBRAIC COMBINATORICS, 15(3), 211-221.

A combinatorial algorithm related to the geometry of the moduli space of pointed curves

BINI G
2002

Abstract

As pointed out in Arbarello and Cornalba ( J. Alg. Geom. 5 (1996), 705–749), a theorem due to Di Francesco, Itzykson, and Zuber (see Di Francesco, Itzykson, and Zuber, Commun. Math. Phys. 151 (1993), 193–219) should yield new relations among cohomology classes of the moduli space of pointed curves. The coefficients appearing in these new relations can be determined by the algorithm we introduce in this paper.
Settore MAT/03 - Geometria
BINI G (2002). A combinatorial algorithm related to the geometry of the moduli space of pointed curves. JOURNAL OF ALGEBRAIC COMBINATORICS, 15(3), 211-221.
File in questo prodotto:
File Dimensione Formato  
bini_cohomology.pdf

Solo gestori archvio

Descrizione: articolo principale
Tipologia: Versione Editoriale
Dimensione 105.05 kB
Formato Adobe PDF
105.05 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/10447/427985
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 1
social impact