As pointed out in Arbarello and Cornalba ( J. Alg. Geom. 5 (1996), 705–749), a theorem due to Di Francesco, Itzykson, and Zuber (see Di Francesco, Itzykson, and Zuber, Commun. Math. Phys. 151 (1993), 193–219) should yield new relations among cohomology classes of the moduli space of pointed curves. The coefficients appearing in these new relations can be determined by the algorithm we introduce in this paper.
BINI G (2002). A combinatorial algorithm related to the geometry of the moduli space of pointed curves. JOURNAL OF ALGEBRAIC COMBINATORICS, 15(3), 211-221.
A combinatorial algorithm related to the geometry of the moduli space of pointed curves
BINI G
2002-01-01
Abstract
As pointed out in Arbarello and Cornalba ( J. Alg. Geom. 5 (1996), 705–749), a theorem due to Di Francesco, Itzykson, and Zuber (see Di Francesco, Itzykson, and Zuber, Commun. Math. Phys. 151 (1993), 193–219) should yield new relations among cohomology classes of the moduli space of pointed curves. The coefficients appearing in these new relations can be determined by the algorithm we introduce in this paper.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
bini_cohomology.pdf
Solo gestori archvio
Descrizione: articolo principale
Tipologia:
Versione Editoriale
Dimensione
105.05 kB
Formato
Adobe PDF
|
105.05 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.