Background: In periodontal patients with jawbone resorption, the autologous bone graft is considered a “gold standard” procedure for the placing of dental prosthesis; however, this procedure is a costly intervention and poses the risk of clinical complications. Thanks to the use of adult mesenchymal stem cells, smart biomaterials, and active biomolecules, regenerative medicine and bone tissue engineering represent a valid alternative to the traditional procedures. Aims: In the past, mesenchymal stem cells isolated from periodontally compromised gingiva were considered a biological waste and discarded during surgical procedures. Conclusion: Matriderm represents a biocompatible scaffold able to support the in vitro cell growth and osteodifferentiation ability of gingival mesenchymal stem cells isolated from waste gingiva, and could be employed to develop low-cost and painless strategy of autologous bone tissue regeneration. This study aims to test the osteoconductive activity of FISIOGRAFT Bone Granular and Matriderm collagen scaffolds on mesenchymal stem cells isolated from periodontally compromised gingiva as a low-cost and painless strategy of autologous bone tissue regeneration. Materials and Methods: We isolated human mesenchymal stem cells from 22 healthy and 26 periodontally compromised gingival biopsy tissues and confirmed the stem cell phenotype by doubling time assay, colony-forming unit assay, and expression of surface and nuclear mesenchymal stem cell markers, respectively by cytofluorimetry and realtime quantitative PCR. Healthy and periodontally compromised gingival mesenchymal stem cells were seeded on FISIOGRAFT Bone GranularR and MatridermR scaffolds, and in vitro cell viability and bone differentiation were then evaluated. Results: Even though preliminary, the results demonstrate that FISIOGRAFT Bone GranularR is not suitable for in vitro growth and osteogenic differentiation of healthy and periodontally compromised mesenchymal stem cells, which, instead, are able to grow, homogeneously distribute, and bone differentiate in the MatridermR collagen scaffold.

Cristaldi, M., Mauceri, R., Campisi, G., Pizzo, G., Alessandro, R., Tomasello, L., et al. (2020). Growth and Osteogenic Differentiation of Discarded Gingiva-Derived Mesenchymal Stem Cells on a Commercial Scaffold. FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 8 [10.3389/fcell.2020.00292].

Growth and Osteogenic Differentiation of Discarded Gingiva-Derived Mesenchymal Stem Cells on a Commercial Scaffold

Cristaldi, Marta;Mauceri, Rodolfo;Campisi, Giuseppina;Pizzo, Giuseppe;Alessandro, Riccardo;Tomasello, Laura;Pitrone, Maria;Pizzolanti, Giuseppe
;
Giordano, Carla
2020-01-01

Abstract

Background: In periodontal patients with jawbone resorption, the autologous bone graft is considered a “gold standard” procedure for the placing of dental prosthesis; however, this procedure is a costly intervention and poses the risk of clinical complications. Thanks to the use of adult mesenchymal stem cells, smart biomaterials, and active biomolecules, regenerative medicine and bone tissue engineering represent a valid alternative to the traditional procedures. Aims: In the past, mesenchymal stem cells isolated from periodontally compromised gingiva were considered a biological waste and discarded during surgical procedures. Conclusion: Matriderm represents a biocompatible scaffold able to support the in vitro cell growth and osteodifferentiation ability of gingival mesenchymal stem cells isolated from waste gingiva, and could be employed to develop low-cost and painless strategy of autologous bone tissue regeneration. This study aims to test the osteoconductive activity of FISIOGRAFT Bone Granular and Matriderm collagen scaffolds on mesenchymal stem cells isolated from periodontally compromised gingiva as a low-cost and painless strategy of autologous bone tissue regeneration. Materials and Methods: We isolated human mesenchymal stem cells from 22 healthy and 26 periodontally compromised gingival biopsy tissues and confirmed the stem cell phenotype by doubling time assay, colony-forming unit assay, and expression of surface and nuclear mesenchymal stem cell markers, respectively by cytofluorimetry and realtime quantitative PCR. Healthy and periodontally compromised gingival mesenchymal stem cells were seeded on FISIOGRAFT Bone GranularR and MatridermR scaffolds, and in vitro cell viability and bone differentiation were then evaluated. Results: Even though preliminary, the results demonstrate that FISIOGRAFT Bone GranularR is not suitable for in vitro growth and osteogenic differentiation of healthy and periodontally compromised mesenchymal stem cells, which, instead, are able to grow, homogeneously distribute, and bone differentiate in the MatridermR collagen scaffold.
2020
Settore MED/13 - Endocrinologia
Settore MED/28 - Malattie Odontostomatologiche
Settore BIO/13 - Biologia Applicata
Cristaldi, M., Mauceri, R., Campisi, G., Pizzo, G., Alessandro, R., Tomasello, L., et al. (2020). Growth and Osteogenic Differentiation of Discarded Gingiva-Derived Mesenchymal Stem Cells on a Commercial Scaffold. FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 8 [10.3389/fcell.2020.00292].
File in questo prodotto:
File Dimensione Formato  
fcell-08-00292.pdf

accesso aperto

Descrizione: articolo
Tipologia: Versione Editoriale
Dimensione 3.51 MB
Formato Adobe PDF
3.51 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/423780
Citazioni
  • ???jsp.display-item.citation.pmc??? 6
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 8
social impact