Filling a polymer with halloysite nanotubes is considered a promising strategy to generate nanocomposites with tailored physicochemical properties. We have focused our attention on pluronic block copolymer/halloysite nanocomposites prepared by melt blending. The effect of composition on thermal stability and polymer crystallinity was investigated by thermogravimetry and differential scanning calorimetry. Electron microscopy was used to monitor the nanoparticle distribution in the polymeric matrix. The pluronic thermal stability is reduced by the clay nanoparticles. Concerning the polymer crystallinity, it is slightly decreased even if the melting temperature is lowered by halloysite. Furthermore, waterlogged archeological wood samples are consolidated using the nanotubes/pluronic nanocomposite, and the penetration of the nanocomposites into the lignin channels is confirmed by measurements based on X-ray computed microtomography.
Parisi F., Bernardini F., Cavallaro G., Mancini L., Milioto S., Prokop D., et al. (2020). Halloysite nanotubes/pluronic nanocomposites for waterlogged archeological wood: thermal stability and X-ray microtomography. JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 141(3), 981-989 [10.1007/s10973-020-09637-4].
Halloysite nanotubes/pluronic nanocomposites for waterlogged archeological wood: thermal stability and X-ray microtomography
Parisi F.
;Cavallaro G.;Milioto S.;Lazzara G.
2020-04-10
Abstract
Filling a polymer with halloysite nanotubes is considered a promising strategy to generate nanocomposites with tailored physicochemical properties. We have focused our attention on pluronic block copolymer/halloysite nanocomposites prepared by melt blending. The effect of composition on thermal stability and polymer crystallinity was investigated by thermogravimetry and differential scanning calorimetry. Electron microscopy was used to monitor the nanoparticle distribution in the polymeric matrix. The pluronic thermal stability is reduced by the clay nanoparticles. Concerning the polymer crystallinity, it is slightly decreased even if the melting temperature is lowered by halloysite. Furthermore, waterlogged archeological wood samples are consolidated using the nanotubes/pluronic nanocomposite, and the penetration of the nanocomposites into the lignin channels is confirmed by measurements based on X-ray computed microtomography.File | Dimensione | Formato | |
---|---|---|---|
Parisi2020_Article_HalloysiteNanotubesPluronicNan.pdf
Solo gestori archvio
Descrizione: versione pubblicato on line dal giornale
Tipologia:
Versione Editoriale
Dimensione
2.15 MB
Formato
Adobe PDF
|
2.15 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.