Existence and location of solutions to a Neumann problem driven by an nonhomogeneous differential operator and with gradient dependence are established developing a non-variational approach based on an adequate method of sub-supersolution. The abstract theorem is applied to prove the existence of finitely many positive solutions or even infinitely many positive solutions for a class of Neumann problems.

Motreanu D., Sciammetta A., & Tornatore E. (2020). A sub-supersolution approach for Neumann boundary value problems with gradient dependence. NONLINEAR ANALYSIS: REAL WORLD APPLICATIONS, 54, 103096 [10.1016/j.nonrwa.2020.103096].

A sub-supersolution approach for Neumann boundary value problems with gradient dependence

Motreanu D.;Sciammetta A.;Tornatore E.
2020

Abstract

Existence and location of solutions to a Neumann problem driven by an nonhomogeneous differential operator and with gradient dependence are established developing a non-variational approach based on an adequate method of sub-supersolution. The abstract theorem is applied to prove the existence of finitely many positive solutions or even infinitely many positive solutions for a class of Neumann problems.
Settore MAT/05 - Analisi Matematica
Motreanu D., Sciammetta A., & Tornatore E. (2020). A sub-supersolution approach for Neumann boundary value problems with gradient dependence. NONLINEAR ANALYSIS: REAL WORLD APPLICATIONS, 54, 103096 [10.1016/j.nonrwa.2020.103096].
File in questo prodotto:
File Dimensione Formato  
16. A sub-supersolution approach for Neumann boundary value problems with gradient dependence.pdf

Solo gestori archvio

Descrizione: articolo principale
Tipologia: Versione Editoriale
Dimensione 612.79 kB
Formato Adobe PDF
612.79 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/10447/421159
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact