In recent years, rock fall phenomena in Italy have received considerable attention for risk mitigation through in situ observations and experimental data. This paper reports the study conducted at Camaldoli Hill, in the urban area of Naples, and at Monte Pellegrino, Palermo, Italy. The rocks involved are volcanic Neapolitan yellow tuff (NYT) in the former area and dolomitic limestone in the latter. Both rocks, even though with different strength characteristics, have shown a significant tendency towards rock fragmentation during run out. This behavior was first investigated by comparing the volumes of removable blocks on the cliff faces (Vo) and fallen blocks on the slopes (Vf). It was assumed that the ratio VIVo decreases with the distance (Xf) from the detachment area by an empirical law , which depends on a coefficient IX, correlated with the geotechnical properties of the materials involved in the rock fall. Finally, this law was validated by observation of well¬documented natural rock falls (Palermo) and by in situ full-scale tests (Naples). From the engineering perspective, consideration of fragmentation processes in rock fall modeling provides a means for designing low-cost mitigation measures

Nocilla, N., Evangelista, A., & Scotto di Santolo, A. (2008). Fragmentation during Rock falls: two italian case studies of hard and soft rocks. ROCK MECHANICS AND ROCK ENGINEERING, 2008-03-03 [10.1007/s00603-008-0006-0].

Fragmentation during Rock falls: two italian case studies of hard and soft rocks

NOCILLA, Nicola;
2008

Abstract

In recent years, rock fall phenomena in Italy have received considerable attention for risk mitigation through in situ observations and experimental data. This paper reports the study conducted at Camaldoli Hill, in the urban area of Naples, and at Monte Pellegrino, Palermo, Italy. The rocks involved are volcanic Neapolitan yellow tuff (NYT) in the former area and dolomitic limestone in the latter. Both rocks, even though with different strength characteristics, have shown a significant tendency towards rock fragmentation during run out. This behavior was first investigated by comparing the volumes of removable blocks on the cliff faces (Vo) and fallen blocks on the slopes (Vf). It was assumed that the ratio VIVo decreases with the distance (Xf) from the detachment area by an empirical law , which depends on a coefficient IX, correlated with the geotechnical properties of the materials involved in the rock fall. Finally, this law was validated by observation of well¬documented natural rock falls (Palermo) and by in situ full-scale tests (Naples). From the engineering perspective, consideration of fragmentation processes in rock fall modeling provides a means for designing low-cost mitigation measures
Settore ICAR/07 - Geotecnica
Nocilla, N., Evangelista, A., & Scotto di Santolo, A. (2008). Fragmentation during Rock falls: two italian case studies of hard and soft rocks. ROCK MECHANICS AND ROCK ENGINEERING, 2008-03-03 [10.1007/s00603-008-0006-0].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/10447/41769
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 22
social impact