We establish the existence of a solution for the following system of differential equations (y x ′′((t t ) ) = = g f ((t t ,y x ((t t )) )) ,y x ((t t 0 0) ) = = x x *** in the space of all bounded and continuous real functions on [0, +∞[. We use best proximity point methods and measure of noncompactness theory under suitable assumptions on f and g. Some new best proximity point theorems play a key role in the above result.

Gabeleh M., & Vetro C. (2019). A best proximity point approach to existence of solutions for a system of ordinary differential equations. BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY SIMON STEVIN, 26(4), 493-503.

A best proximity point approach to existence of solutions for a system of ordinary differential equations

Vetro C.
2019

Abstract

We establish the existence of a solution for the following system of differential equations (y x ′′((t t ) ) = = g f ((t t ,y x ((t t )) )) ,y x ((t t 0 0) ) = = x x *** in the space of all bounded and continuous real functions on [0, +∞[. We use best proximity point methods and measure of noncompactness theory under suitable assumptions on f and g. Some new best proximity point theorems play a key role in the above result.
Settore MAT/05 - Analisi Matematica
https://projecteuclid.org/euclid.bbms/1576206350
Gabeleh M., & Vetro C. (2019). A best proximity point approach to existence of solutions for a system of ordinary differential equations. BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY SIMON STEVIN, 26(4), 493-503.
File in questo prodotto:
File Dimensione Formato  
2019_BBMS_GabelehVetro.pdf

Solo gestori archvio

Descrizione: Articolo principale
Tipologia: Versione Editoriale
Dimensione 460.57 kB
Formato Adobe PDF
460.57 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/10447/416440
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 4
social impact