We consider a parametric nonlinear Robin problem driven by the sum of a p-Laplacian and of a q-Laplacian ((p, q)-equation). The reaction term is (p - 1)-superlinear but need not satisfy the Ambrosetti-Rabinowitz condition. Using variational tools, together with truncation and comparison techniques and critical groups, we show that for all small values of the parameter, the problem has at least five nontrivial smooth solutions, all with sign information.
Onete F.-I., Papageorgiou N.S., Vetro C. (2020). A multiplicity theorem for parametric superlinear (p, q)-equations. OPUSCULA MATHEMATICA. ROCZNIK AKADEMIA GÓRNICZO-HUTNICZA IM. STANISłAWA STASZICA, 40(1), 131-149 [10.7494/OpMath.2020.40.1.131].
A multiplicity theorem for parametric superlinear (p, q)-equations
Vetro C.
2020-01-01
Abstract
We consider a parametric nonlinear Robin problem driven by the sum of a p-Laplacian and of a q-Laplacian ((p, q)-equation). The reaction term is (p - 1)-superlinear but need not satisfy the Ambrosetti-Rabinowitz condition. Using variational tools, together with truncation and comparison techniques and critical groups, we show that for all small values of the parameter, the problem has at least five nontrivial smooth solutions, all with sign information.File | Dimensione | Formato | |
---|---|---|---|
2020_opuscula_math_4008_OnetePapageorgiouVetro.pdf
accesso aperto
Descrizione: Articolo principale
Tipologia:
Versione Editoriale
Dimensione
501.91 kB
Formato
Adobe PDF
|
501.91 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.