We consider a parametric nonlinear Robin problem driven by the sum of a p-Laplacian and of a q-Laplacian ((p, q)-equation). The reaction term is (p - 1)-superlinear but need not satisfy the Ambrosetti-Rabinowitz condition. Using variational tools, together with truncation and comparison techniques and critical groups, we show that for all small values of the parameter, the problem has at least five nontrivial smooth solutions, all with sign information.
Onete F.-I., Papageorgiou N.S., & Vetro C. (2020). A multiplicity theorem for parametric superlinear (p, q)-equations. OPUSCULA MATHEMATICA. ROCZNIK AKADEMIA GÓRNICZO-HUTNICZA IM. STANISłAWA STASZICA, 40(1), 131-149 [10.7494/OpMath.2020.40.1.131].
Data di pubblicazione: | 2020 | |
Titolo: | A multiplicity theorem for parametric superlinear (p, q)-equations | |
Autori: | VETRO, Calogero (Corresponding) | |
Citazione: | Onete F.-I., Papageorgiou N.S., & Vetro C. (2020). A multiplicity theorem for parametric superlinear (p, q)-equations. OPUSCULA MATHEMATICA. ROCZNIK AKADEMIA GÓRNICZO-HUTNICZA IM. STANISłAWA STASZICA, 40(1), 131-149 [10.7494/OpMath.2020.40.1.131]. | |
Rivista: | ||
Digital Object Identifier (DOI): | http://dx.doi.org/10.7494/OpMath.2020.40.1.131 | |
Abstract: | We consider a parametric nonlinear Robin problem driven by the sum of a p-Laplacian and of a q-Laplacian ((p, q)-equation). The reaction term is (p - 1)-superlinear but need not satisfy the Ambrosetti-Rabinowitz condition. Using variational tools, together with truncation and comparison techniques and critical groups, we show that for all small values of the parameter, the problem has at least five nontrivial smooth solutions, all with sign information. | |
Settore Scientifico Disciplinare: | Settore MAT/05 - Analisi Matematica | |
Appare nelle tipologie: | 1.01 Articolo in rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
2020_opuscula_math_4008_OnetePapageorgiouVetro.pdf | Articolo principale | Versione Editoriale | Open Access Visualizza/Apri |