The paper deals with the question of convergence of multiple Fourier-Haar series with partial sums taken over homothetic copies of a given convex bounded set W⊂R+n containing the intersection of some neighborhood of the origin with R+n. It is proved that for this type sets W with symmetric structure it is guaranteed almost everywhere convergence of Fourier-Haar series of any function from the class L(ln+L)n−1.
Oniani G.G., & Tulone F. (2019). On the Almost Everywhere Convergence of Multiple Fourier-Haar Series. JOURNAL OF CONTEMPORARY MATHEMATICAL ANALYSIS, 54(5), 288-295 [10.3103/S1068362319050054].
Data di pubblicazione: | 2019 | |
Titolo: | On the Almost Everywhere Convergence of Multiple Fourier-Haar Series | |
Autori: | TULONE, Francesco (Corresponding) | |
Citazione: | Oniani G.G., & Tulone F. (2019). On the Almost Everywhere Convergence of Multiple Fourier-Haar Series. JOURNAL OF CONTEMPORARY MATHEMATICAL ANALYSIS, 54(5), 288-295 [10.3103/S1068362319050054]. | |
Rivista: | ||
Digital Object Identifier (DOI): | http://dx.doi.org/10.3103/S1068362319050054 | |
Abstract: | The paper deals with the question of convergence of multiple Fourier-Haar series with partial sums taken over homothetic copies of a given convex bounded set W⊂R+n containing the intersection of some neighborhood of the origin with R+n. It is proved that for this type sets W with symmetric structure it is guaranteed almost everywhere convergence of Fourier-Haar series of any function from the class L(ln+L)n−1. | |
Settore Scientifico Disciplinare: | Settore MAT/05 - Analisi Matematica | |
Appare nelle tipologie: | 1.01 Articolo in rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
JCMA - Oniani-Tulone.pdf | articolo principale | Versione Editoriale | Administrator Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.