Among irrigation systems, subsurface drip irrigation allows obtaining values of water use efficiency higher than 90%. However, when emitters are installed below the soil surface, root intrusion can represent the main cause of emitter occlusion. To prevent this phenomenon, manufacturers normally include herbicides in the plastic matrix of the emitters. Objectives of this paper were: i) to evaluate the effectiveness of alternative anti-root agents embedded in the same emitter model and ii) to identify their possible effects on the growth of a commonly adopted citrus rootstock (citrange ‘Carrizo’). Five different anti-root agents were tested in 8 lined trees, planted in split-root containers in which half volume was irrigated with a control emitter (C) including a physical barrier (PB) against root intrusion, while the other half with one emitter containing the anti-root agent. The following root growth inhibitors were examined: Copper (Cu), Cyanamide at two concentrations (CY1, CY2), and two different herbicides, Trifluralin (R1) and Preventol ® (R2). One year after transplanting the trees, new vegetation was measured in all the trees, whereas the root development and the flow rate-pressure head relationship Q(P) of the corresponding emitters were measured in 3 containers per treatment, after baring the roots and removing the emitters; the possible presence of roots inside the emitter flow paths was finally observed. Experiments evidenced similar tree growth among treatments and the absence of effects on root growth produced by the anti-root agents. It was observed that in the control, as well as in four emitter models containing anti-root agents, root intrusion occurred. The average lengths of roots inside the flow paths were 7.20, 6.55, 5.63, 5.80, 8.70 cm for CY1, CY2, C, Cu, and R1, respectively; only in treatment R2 there were no roots inside the emitters flow path. Roots intrusion affected the Q(P) relationships, causing the complete clogging of some of the emitters in C and CY1, with reductions of the average flow rates ranging between 2%(Cu) and 31% (CY1) and a substantial increase of the coefficient of variation.

loris franco, a.m. (2020). EVALUATION OF SUBSURFACE DRIP IRRIGATION EMITTERS ON A SPLIT-ROOT CONTAINER-GROWN CITRUS ROOTSTOCK (CITRANGE CARRIZO). ACTA HORTICULTURAE.

EVALUATION OF SUBSURFACE DRIP IRRIGATION EMITTERS ON A SPLIT-ROOT CONTAINER-GROWN CITRUS ROOTSTOCK (CITRANGE CARRIZO)

loris franco
;
antonio motisi;giuseppe provenzano
2020-01-01

Abstract

Among irrigation systems, subsurface drip irrigation allows obtaining values of water use efficiency higher than 90%. However, when emitters are installed below the soil surface, root intrusion can represent the main cause of emitter occlusion. To prevent this phenomenon, manufacturers normally include herbicides in the plastic matrix of the emitters. Objectives of this paper were: i) to evaluate the effectiveness of alternative anti-root agents embedded in the same emitter model and ii) to identify their possible effects on the growth of a commonly adopted citrus rootstock (citrange ‘Carrizo’). Five different anti-root agents were tested in 8 lined trees, planted in split-root containers in which half volume was irrigated with a control emitter (C) including a physical barrier (PB) against root intrusion, while the other half with one emitter containing the anti-root agent. The following root growth inhibitors were examined: Copper (Cu), Cyanamide at two concentrations (CY1, CY2), and two different herbicides, Trifluralin (R1) and Preventol ® (R2). One year after transplanting the trees, new vegetation was measured in all the trees, whereas the root development and the flow rate-pressure head relationship Q(P) of the corresponding emitters were measured in 3 containers per treatment, after baring the roots and removing the emitters; the possible presence of roots inside the emitter flow paths was finally observed. Experiments evidenced similar tree growth among treatments and the absence of effects on root growth produced by the anti-root agents. It was observed that in the control, as well as in four emitter models containing anti-root agents, root intrusion occurred. The average lengths of roots inside the flow paths were 7.20, 6.55, 5.63, 5.80, 8.70 cm for CY1, CY2, C, Cu, and R1, respectively; only in treatment R2 there were no roots inside the emitters flow path. Roots intrusion affected the Q(P) relationships, causing the complete clogging of some of the emitters in C and CY1, with reductions of the average flow rates ranging between 2%(Cu) and 31% (CY1) and a substantial increase of the coefficient of variation.
2020
loris franco, a.m. (2020). EVALUATION OF SUBSURFACE DRIP IRRIGATION EMITTERS ON A SPLIT-ROOT CONTAINER-GROWN CITRUS ROOTSTOCK (CITRANGE CARRIZO). ACTA HORTICULTURAE.
File in questo prodotto:
File Dimensione Formato  
ISHS_Matera_2019_Evaluation of Subsurface Drip Irrigation Emitters.pdf

Solo gestori archvio

Descrizione: Articolo principale
Tipologia: Post-print
Dimensione 714.54 kB
Formato Adobe PDF
714.54 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
ISHS_2019_Matera_Evaluation of Subsurface Drip Irrigation Emitters_Poster.pdf

Solo gestori archvio

Descrizione: Poster
Tipologia: Altro materiale (es. dati della ricerca)
Dimensione 2.02 MB
Formato Adobe PDF
2.02 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/409784
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact