This paper introduces a new classifier, that is based on fuzzy-integration schemes controlled by a genetic optimisation procedure. Two different types of integration are proposed here, and are validated by experiments on real data sets of biological cells. The performance of our classifier is tested against a feed-forward neural network and a Support Vector Machine. Results show the good performance and robustness of the integrated classifier strategies.

Di Gesù, V., Lo Bosco, G. (2005). A Genetic Integrated Fuzzy Classifier. PATTERN RECOGNITION LETTERS, 26(4), 411-420 [10.1016/j.patrec.2004.08.004].

A Genetic Integrated Fuzzy Classifier

DI GESU', Vito;LO BOSCO, Giosue'
2005-01-01

Abstract

This paper introduces a new classifier, that is based on fuzzy-integration schemes controlled by a genetic optimisation procedure. Two different types of integration are proposed here, and are validated by experiments on real data sets of biological cells. The performance of our classifier is tested against a feed-forward neural network and a Support Vector Machine. Results show the good performance and robustness of the integrated classifier strategies.
2005
Di Gesù, V., Lo Bosco, G. (2005). A Genetic Integrated Fuzzy Classifier. PATTERN RECOGNITION LETTERS, 26(4), 411-420 [10.1016/j.patrec.2004.08.004].
File in questo prodotto:
File Dimensione Formato  
Di Gesù, Lo Bosco - 2005 - A genetic integrated fuzzy classifier.pdf

Solo gestori archvio

Dimensione 315 kB
Formato Adobe PDF
315 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/40545
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 8
social impact