Purpose: Neuroblastoma is a pediatric tumor of peripheral sympathoadrenal neuroblasts. The long-term event-free survival of children with high-risk neuroblastoma is still poor despite the improvements with current multimodality treatment protocols. Activated JAK/STAT3 pathway plays an important role in many human cancers, suggesting that targeting STAT3 is a promising strategy for treating high-risk neuroblastoma. Experimental Design: To evaluate the biologic consequences of specific targeting of STAT3 in neuroblastoma, we assessed the effect of tetracycline (Tet)-inducible STAT3 shRNA and the generation 2.5 antisense oligonucleotide AZD9150 which targets STAT3 in three representative neuroblastoma cell line models (AS, NGP, and IMR32). Results: Our data indicated that Tet-inducible STAT3 shRNA and AZD9150 inhibited endogenous STAT3 and STAT3 target genes. Tet-inducible STAT3 shRNA and AZD9150 decreased cell growth and tumorigenicity. In vivo, STAT3 inhibition by Tet-inducible STAT3 shRNA or AZD9150 alone had little effect on growth of established tumors. However, when treated xenograft tumor cells were reimplanted into mice, there was a significant decrease in secondary tumors in the mice receiving AZD9150-treated tumor cells compared with the mice receiving ntASO-treated tumor cells. This indicates that inhibition of STAT3 decreases the tumor-initiating potential of neuroblastoma cells. Furthermore, inhibition of STAT3 significantly increased neuroblastoma cell sensitivity to cisplatin and decreased tumor growth and increased the survival of tumor-bearing mice in vivo. Conclusions: Our study supports the development of strategies targeting STAT3 inhibition in combination with conventional chemotherapy for patients with high-risk neuroblastoma.

Odate S., Veschi V., Yan S., Lam N., Woessner R., & Thiele C.J. (2017). Inhibition of STAT3 with the generation 2.5 antisense oligonucleotide, AZD9150, decreases neuroblastoma tumorigenicity and increases chemosensitivity. CLINICAL CANCER RESEARCH, 23(7), 1771-1784 [10.1158/1078-0432.CCR-16-1317].

Inhibition of STAT3 with the generation 2.5 antisense oligonucleotide, AZD9150, decreases neuroblastoma tumorigenicity and increases chemosensitivity

Veschi V.;
2017

Abstract

Purpose: Neuroblastoma is a pediatric tumor of peripheral sympathoadrenal neuroblasts. The long-term event-free survival of children with high-risk neuroblastoma is still poor despite the improvements with current multimodality treatment protocols. Activated JAK/STAT3 pathway plays an important role in many human cancers, suggesting that targeting STAT3 is a promising strategy for treating high-risk neuroblastoma. Experimental Design: To evaluate the biologic consequences of specific targeting of STAT3 in neuroblastoma, we assessed the effect of tetracycline (Tet)-inducible STAT3 shRNA and the generation 2.5 antisense oligonucleotide AZD9150 which targets STAT3 in three representative neuroblastoma cell line models (AS, NGP, and IMR32). Results: Our data indicated that Tet-inducible STAT3 shRNA and AZD9150 inhibited endogenous STAT3 and STAT3 target genes. Tet-inducible STAT3 shRNA and AZD9150 decreased cell growth and tumorigenicity. In vivo, STAT3 inhibition by Tet-inducible STAT3 shRNA or AZD9150 alone had little effect on growth of established tumors. However, when treated xenograft tumor cells were reimplanted into mice, there was a significant decrease in secondary tumors in the mice receiving AZD9150-treated tumor cells compared with the mice receiving ntASO-treated tumor cells. This indicates that inhibition of STAT3 decreases the tumor-initiating potential of neuroblastoma cells. Furthermore, inhibition of STAT3 significantly increased neuroblastoma cell sensitivity to cisplatin and decreased tumor growth and increased the survival of tumor-bearing mice in vivo. Conclusions: Our study supports the development of strategies targeting STAT3 inhibition in combination with conventional chemotherapy for patients with high-risk neuroblastoma.
Odate S., Veschi V., Yan S., Lam N., Woessner R., & Thiele C.J. (2017). Inhibition of STAT3 with the generation 2.5 antisense oligonucleotide, AZD9150, decreases neuroblastoma tumorigenicity and increases chemosensitivity. CLINICAL CANCER RESEARCH, 23(7), 1771-1784 [10.1158/1078-0432.CCR-16-1317].
File in questo prodotto:
File Dimensione Formato  
Inhibition of STAT3 with the Generation 2.5 Antisense Oligonucleotide, AZD9150, Decreases Neuroblastoma Tumorigenicity and Increases Chemosensitivity.pdf

embargo fino al 10/04/2021

Tipologia: Versione Editoriale
Dimensione 438.51 kB
Formato Adobe PDF
438.51 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/10447/404702
Citazioni
  • ???jsp.display-item.citation.pmc??? 28
  • Scopus 37
  • ???jsp.display-item.citation.isi??? 34
social impact