We introduce a notion of cyclic Meir–Keeler contractions and prove a theorem which assures the existence and uniqueness of a best proximity point for cyclic Meir–Keeler contractions. This theorem is a generalization of a recent result due to Eldred and Veeramani.

Di Bari, C., Suzuki, T., Vetro, C. (2008). Best proximity points for cyclic Meir–Keeler contractions. NONLINEAR ANALYSIS, 69(11), 3790-3794 [10.1016/j.na.2007.10.014].

Best proximity points for cyclic Meir–Keeler contractions

DI BARI, Cristina;VETRO, Calogero
2008-01-01

Abstract

We introduce a notion of cyclic Meir–Keeler contractions and prove a theorem which assures the existence and uniqueness of a best proximity point for cyclic Meir–Keeler contractions. This theorem is a generalization of a recent result due to Eldred and Veeramani.
2008
Settore MAT/05 - Analisi Matematica
Di Bari, C., Suzuki, T., Vetro, C. (2008). Best proximity points for cyclic Meir–Keeler contractions. NONLINEAR ANALYSIS, 69(11), 3790-3794 [10.1016/j.na.2007.10.014].
File in questo prodotto:
File Dimensione Formato  
NA69_2008.pdf

Solo gestori archvio

Dimensione 337.7 kB
Formato Adobe PDF
337.7 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/40160
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 236
  • ???jsp.display-item.citation.isi??? 223
social impact