We give necessary and sufficient conditions for the scalar Kurzweil-Henstock integrability and the Kurzweil-Henstock-Pettis integrability of functions $f:[1, infty) ightarrow X$ defined as $f=sum_{n=1}^infty x_n chi_{[n,n+1)}$. Also the variational Henstock integrability is considered
Marraffa, V. (2008). Strongly measurable Kurzweil-Henstock type integrable functions and series. QUAESTIONES MATHEMATICAE, 31(4), 379-386 [10.2989/QM.2008.31.4.6.610].
Strongly measurable Kurzweil-Henstock type integrable functions and series
MARRAFFA, Valeria
2008-01-01
Abstract
We give necessary and sufficient conditions for the scalar Kurzweil-Henstock integrability and the Kurzweil-Henstock-Pettis integrability of functions $f:[1, infty) ightarrow X$ defined as $f=sum_{n=1}^infty x_n chi_{[n,n+1)}$. Also the variational Henstock integrability is consideredFile in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
V_MARRAFFA_QM_2008.pdf
Solo gestori archvio
Tipologia:
Versione Editoriale
Dimensione
149.56 kB
Formato
Adobe PDF
|
149.56 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.