Novel ternary nanocomposite photocatalysts based on g-C3N4 /Fe3O4 /TiO2 nanosheet were synthesized using simple solid combustion, hydrothermal and wetness impregnation methods. The g-C3N4 nanosheet (2D)/ Fe3O4 /TiO2 nanosheet (2D) triad-interface nanocomposite arranged in the form of Fe 3 O 4 nanoparticle was sandwiched and effectively dispersed on the surface between g-C3N4 and TiO2 nanosheets. The synthesized composites were characterized by some specific techniques such as X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, field emission scanning electronic microscopy (FE-SEM), transmission electron microscope (TEM), vibrating sample magnetometer (VSM), specific surface area (SSA), and dynamic laser scattering (DLS) analyzer. The effect of Fe3O4 loading quantity on photocatalytic overall performance indicated that g-C3N4 nanosheets/Fe3O4/TiO2 nanosheets with 5% wt Fe3O4 nanoparticle exhibit the best photocatalytic ability. These composites showed excellent activities in the UV-light-driven degradation of direct blue (DB), methyl blue (MB) and safranin (SA). After irradiation for 210 min, the methylene blue (MB) degradation efficiency was 63% for g-C3N4 , 58% for TiO2 , 71% for g-C3N4-TiO2 , 85% for g-C3N4 -1% wt Fe3O4-TiO2 , 96% for g-C3N4 -5% wt Fe3O4 -TiO2 and 77% for g-C3N4-10% wt Fe3O4-TiO2 indicating that nanocomposites with 5 wt% Fe3O4 had the best photocatalytic performance. The SSA of the TiO2 , g-C3N4 , g-C3N4-TiO2 and g-C3N4-10% wt Fe3O4-TiO2 were determined using Sear's method. Finally, it is worth mentioning that the surface area of the g-C3N4-10% wt Fe3O4-TiO2 photocatalyst has been found to be 66.2 m 2 g -1 .

Abbasi Z., Farrokhnia A., Garcia-Lopez E.I., Zargar Shoushtari M. (2019). Codeposition of Fe 3 O 4 nanoparticles sandwiched between g-C3N4 and TiO2 nanosheets: Structure, characterization and high photocatalytic activity for efficiently degradation of dye pollutants. PHYSICAL CHEMISTRY RESEARCH, 7(1), 65-80 [10.22036/pcr.2018.147945.1537].

Codeposition of Fe 3 O 4 nanoparticles sandwiched between g-C3N4 and TiO2 nanosheets: Structure, characterization and high photocatalytic activity for efficiently degradation of dye pollutants

Garcia-Lopez E. I.;
2019-01-01

Abstract

Novel ternary nanocomposite photocatalysts based on g-C3N4 /Fe3O4 /TiO2 nanosheet were synthesized using simple solid combustion, hydrothermal and wetness impregnation methods. The g-C3N4 nanosheet (2D)/ Fe3O4 /TiO2 nanosheet (2D) triad-interface nanocomposite arranged in the form of Fe 3 O 4 nanoparticle was sandwiched and effectively dispersed on the surface between g-C3N4 and TiO2 nanosheets. The synthesized composites were characterized by some specific techniques such as X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, field emission scanning electronic microscopy (FE-SEM), transmission electron microscope (TEM), vibrating sample magnetometer (VSM), specific surface area (SSA), and dynamic laser scattering (DLS) analyzer. The effect of Fe3O4 loading quantity on photocatalytic overall performance indicated that g-C3N4 nanosheets/Fe3O4/TiO2 nanosheets with 5% wt Fe3O4 nanoparticle exhibit the best photocatalytic ability. These composites showed excellent activities in the UV-light-driven degradation of direct blue (DB), methyl blue (MB) and safranin (SA). After irradiation for 210 min, the methylene blue (MB) degradation efficiency was 63% for g-C3N4 , 58% for TiO2 , 71% for g-C3N4-TiO2 , 85% for g-C3N4 -1% wt Fe3O4-TiO2 , 96% for g-C3N4 -5% wt Fe3O4 -TiO2 and 77% for g-C3N4-10% wt Fe3O4-TiO2 indicating that nanocomposites with 5 wt% Fe3O4 had the best photocatalytic performance. The SSA of the TiO2 , g-C3N4 , g-C3N4-TiO2 and g-C3N4-10% wt Fe3O4-TiO2 were determined using Sear's method. Finally, it is worth mentioning that the surface area of the g-C3N4-10% wt Fe3O4-TiO2 photocatalyst has been found to be 66.2 m 2 g -1 .
2019
Settore CHIM/07 - Fondamenti Chimici Delle Tecnologie
Settore CHIM/03 - Chimica Generale E Inorganica
Abbasi Z., Farrokhnia A., Garcia-Lopez E.I., Zargar Shoushtari M. (2019). Codeposition of Fe 3 O 4 nanoparticles sandwiched between g-C3N4 and TiO2 nanosheets: Structure, characterization and high photocatalytic activity for efficiently degradation of dye pollutants. PHYSICAL CHEMISTRY RESEARCH, 7(1), 65-80 [10.22036/pcr.2018.147945.1537].
File in questo prodotto:
File Dimensione Formato  
Abbasi - Physical Chemistry Research 7 (2019) 65-80.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Versione Editoriale
Dimensione 1.17 MB
Formato Adobe PDF
1.17 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/400686
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 6
social impact