Keggin [PW12O40]3- and Wells-Dawson [P2W18O62]6- heteropolyanions are nanosized transition-metal-oxygen clusters belonging to the heteropolyacids (HPAs) family. They are widely used as catalysts due to their high Brønsted acidity, and their dispersion on solid supports favors the accessibility to their acid sites generally increasing the catalytic activity. A series of binary materials composed of Keggin or Wells-Dawson HPAs and SiO2, TiO2, and ZrO2 have been prepared by impregnation or solvothermal methods. Remarkable differences have been found in the catalytic activities among the unsupported and supported HPAs. These differences have been correlated in the past to the structural changes of the HPAs due to the cluster-support interaction, which is different depending on preparation methodologies of the binary material. In the present work, the modes of interaction between the two types of HPA, Keggin and Wells-Dawson, and various supports have been studied by X-ray absorption spectroscopy. The obtained data have been compared to the characterization of the same materials reported before by using different bulk and surface physicochemical techniques. The characterization results were then used to correlate the interaction modes between the HPAs and the supports with the catalytic performances reported for 2-propanol dehydration to propene and for propene hydration to 2-propanol. The results reveal that the deposition of HPA by impregnation or solvothermal treatment may cause distortions in the H3PW12O40 cluster structure depending on the presence of stronger (TiO2 and ZrO2) or weaker (SiO2) basic sites in the support, respectively. Moreover, the type of preparation method affects the structure and acidic properties of the supported HPAs. In particular, during the preparation of TiO2 and ZrO2 with HPA by in situ solvothermal method, the reaction of the HPA with the products of metal alkoxides hydrolysis occurs with consequent destruction of the Keggin structure. Therefore, the catalytic activity of such materials is poor. These modifications, in addition to the bulk and surface features of the supported HPAs, affected the catalytic 2-propanol dehydration to a significant extent. On the contrary, the propene hydration was less influenced, probably, due to the propene nonpolar nature.

Garcia-Lopez E.I., Marci G., Krivtsov I., Casado Espina J., Liotta L.F., Serrano A. (2019). Local Structure of Supported Keggin and Wells-Dawson Heteropolyacids and Its Influence on the Catalytic Activity. JOURNAL OF PHYSICAL CHEMISTRY. C, 123(32), 19513-19527 [10.1021/acs.jpcc.9b03659].

Local Structure of Supported Keggin and Wells-Dawson Heteropolyacids and Its Influence on the Catalytic Activity

Garcia-Lopez E. I.;Marci G.
;
2019-08-15

Abstract

Keggin [PW12O40]3- and Wells-Dawson [P2W18O62]6- heteropolyanions are nanosized transition-metal-oxygen clusters belonging to the heteropolyacids (HPAs) family. They are widely used as catalysts due to their high Brønsted acidity, and their dispersion on solid supports favors the accessibility to their acid sites generally increasing the catalytic activity. A series of binary materials composed of Keggin or Wells-Dawson HPAs and SiO2, TiO2, and ZrO2 have been prepared by impregnation or solvothermal methods. Remarkable differences have been found in the catalytic activities among the unsupported and supported HPAs. These differences have been correlated in the past to the structural changes of the HPAs due to the cluster-support interaction, which is different depending on preparation methodologies of the binary material. In the present work, the modes of interaction between the two types of HPA, Keggin and Wells-Dawson, and various supports have been studied by X-ray absorption spectroscopy. The obtained data have been compared to the characterization of the same materials reported before by using different bulk and surface physicochemical techniques. The characterization results were then used to correlate the interaction modes between the HPAs and the supports with the catalytic performances reported for 2-propanol dehydration to propene and for propene hydration to 2-propanol. The results reveal that the deposition of HPA by impregnation or solvothermal treatment may cause distortions in the H3PW12O40 cluster structure depending on the presence of stronger (TiO2 and ZrO2) or weaker (SiO2) basic sites in the support, respectively. Moreover, the type of preparation method affects the structure and acidic properties of the supported HPAs. In particular, during the preparation of TiO2 and ZrO2 with HPA by in situ solvothermal method, the reaction of the HPA with the products of metal alkoxides hydrolysis occurs with consequent destruction of the Keggin structure. Therefore, the catalytic activity of such materials is poor. These modifications, in addition to the bulk and surface features of the supported HPAs, affected the catalytic 2-propanol dehydration to a significant extent. On the contrary, the propene hydration was less influenced, probably, due to the propene nonpolar nature.
15-ago-2019
Settore CHIM/07 - Fondamenti Chimici Delle Tecnologie
Settore CHIM/03 - Chimica Generale E Inorganica
Garcia-Lopez E.I., Marci G., Krivtsov I., Casado Espina J., Liotta L.F., Serrano A. (2019). Local Structure of Supported Keggin and Wells-Dawson Heteropolyacids and Its Influence on the Catalytic Activity. JOURNAL OF PHYSICAL CHEMISTRY. C, 123(32), 19513-19527 [10.1021/acs.jpcc.9b03659].
File in questo prodotto:
File Dimensione Formato  
Garcia-Lopez-J Phys Chem C 2019-local structure Keggin and Wells Dawson.pdf

Solo gestori archvio

Descrizione: Articolo rivista
Tipologia: Versione Editoriale
Dimensione 2.02 MB
Formato Adobe PDF
2.02 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Garcia_Local_Journal of Physical Chemistry_2019.pdf

accesso aperto

Tipologia: Pre-print
Dimensione 597.38 kB
Formato Adobe PDF
597.38 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/400683
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 32
  • ???jsp.display-item.citation.isi??? 33
social impact