We define and investigate Heyting-valued interpretations for Constructive Zermelo-Frankel set theory (CZF). These interpretations provide models for CZF that are analogous to Boolean-valued models for ZF and to Heyting-valued models for IZF. Heyting-valued interpretations are defined here using set-generated frames and formal topologies. As applications of Heyting-valued interpretations, we present a relative consistency result and an independence proof.
GAMBINO, N. (2006). Heyting-valued interpretations for constructive set theory. ANNALS OF PURE AND APPLIED LOGIC, 137(1-3), 164-188 [10.1016/j.apal.2005.05.021].
Heyting-valued interpretations for constructive set theory
GAMBINO, Nicola
2006-01-01
Abstract
We define and investigate Heyting-valued interpretations for Constructive Zermelo-Frankel set theory (CZF). These interpretations provide models for CZF that are analogous to Boolean-valued models for ZF and to Heyting-valued models for IZF. Heyting-valued interpretations are defined here using set-generated frames and formal topologies. As applications of Heyting-valued interpretations, we present a relative consistency result and an independence proof.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
HeytingValuedInterpretationsForConstructiveSetTheory.pdf
Solo gestori archvio
Dimensione
347.1 kB
Formato
Adobe PDF
|
347.1 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.