The unoccupied electronic structures of three closed-shell, highly popular organoiron complexes ([Fe(CO)5], [(η5-C5H5)Fe(CO)(μ-CO)]2, and [(η5-C5H5)2Fe]; 0, I, and II, respectively) have been investigated both experimentally and theoretically by combining original gas-phase X-ray absorption spectroscopy (XAS) outcomes recorded at the C and O K-edge with results of scalar relativistic time-dependent density functional calculations carried out within the zeroth order regular approximation. Experimental evidence herein discussed complement the Fe L2,3-edges XAS ones we recently recorded, modeled, and assigned for the same complexes (Carlotto et al. Inorg. Chem. 2019, 58, 5844). The first-principle simulation of the C and O K-edge features allowed us to univocally identify the electronic states associated to the ligand-to-metal charge transfer (LMCT) transitions both in I and in II. At variance to that, LMCT transitions with sizable oscillator strengths do not play any role in determining neither the C nor the O K-edge spectral pattern of 0. The higher IC-acceptor capability of the CO ligand, regardless of its terminal or bridging coordination, with respect to [(η5-C5H5)]- is herein ultimately confirmed.

Carlotto S., Finetti P., De Simone M., Coreno M., Casella G., Sambi M., et al. (2019). Comparative Experimental and Theoretical Study of the C and O K-Edge X-ray Absorption Spectroscopy in Three Highly Popular, Low Spin Organoiron Complexes: [Fe(CO)5], [(η5-C5H5)Fe(CO)(μ-CO)]2, and [(η5-C5H5)2Fe]. INORGANIC CHEMISTRY, 58(24), 16411-16423 [10.1021/acs.inorgchem.9b02107].

Comparative Experimental and Theoretical Study of the C and O K-Edge X-ray Absorption Spectroscopy in Three Highly Popular, Low Spin Organoiron Complexes: [Fe(CO)5], [(η5-C5H5)Fe(CO)(μ-CO)]2, and [(η5-C5H5)2Fe]

Casella G.;
2019-01-01

Abstract

The unoccupied electronic structures of three closed-shell, highly popular organoiron complexes ([Fe(CO)5], [(η5-C5H5)Fe(CO)(μ-CO)]2, and [(η5-C5H5)2Fe]; 0, I, and II, respectively) have been investigated both experimentally and theoretically by combining original gas-phase X-ray absorption spectroscopy (XAS) outcomes recorded at the C and O K-edge with results of scalar relativistic time-dependent density functional calculations carried out within the zeroth order regular approximation. Experimental evidence herein discussed complement the Fe L2,3-edges XAS ones we recently recorded, modeled, and assigned for the same complexes (Carlotto et al. Inorg. Chem. 2019, 58, 5844). The first-principle simulation of the C and O K-edge features allowed us to univocally identify the electronic states associated to the ligand-to-metal charge transfer (LMCT) transitions both in I and in II. At variance to that, LMCT transitions with sizable oscillator strengths do not play any role in determining neither the C nor the O K-edge spectral pattern of 0. The higher IC-acceptor capability of the CO ligand, regardless of its terminal or bridging coordination, with respect to [(η5-C5H5)]- is herein ultimately confirmed.
2019
Carlotto S., Finetti P., De Simone M., Coreno M., Casella G., Sambi M., et al. (2019). Comparative Experimental and Theoretical Study of the C and O K-Edge X-ray Absorption Spectroscopy in Three Highly Popular, Low Spin Organoiron Complexes: [Fe(CO)5], [(η5-C5H5)Fe(CO)(μ-CO)]2, and [(η5-C5H5)2Fe]. INORGANIC CHEMISTRY, 58(24), 16411-16423 [10.1021/acs.inorgchem.9b02107].
File in questo prodotto:
File Dimensione Formato  
IC_2019_2.pdf

Solo gestori archvio

Descrizione: Articolo
Tipologia: Versione Editoriale
Dimensione 2.77 MB
Formato Adobe PDF
2.77 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/399422
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact