We consider nonlinear, nonhomogeneous Robin problems with a (p - 1)-superlinear reaction term, which need not satisfy the Ambrosetti-Rabinowitz condition. We look for positive solutions and prove existence and multiplicity theorems. For the particular case of the p-Laplacian, we prove existence results under a different geometry near the origin.
Papageorgiou N.S., Vetro C., & Vetro F. (2019). Solutions and positive solutions for superlinear Robin problems. JOURNAL OF MATHEMATICAL PHYSICS, 60(10), 1-26.
Data di pubblicazione: | 2019 |
Titolo: | Solutions and positive solutions for superlinear Robin problems |
Autori: | |
Citazione: | Papageorgiou N.S., Vetro C., & Vetro F. (2019). Solutions and positive solutions for superlinear Robin problems. JOURNAL OF MATHEMATICAL PHYSICS, 60(10), 1-26. |
Rivista: | |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1063/1.5118760 |
Abstract: | We consider nonlinear, nonhomogeneous Robin problems with a (p - 1)-superlinear reaction term, which need not satisfy the Ambrosetti-Rabinowitz condition. We look for positive solutions and prove existence and multiplicity theorems. For the particular case of the p-Laplacian, we prove existence results under a different geometry near the origin. |
URL: | https://doi.org/10.1063/1.5118760 |
Settore Scientifico Disciplinare: | Settore MAT/05 - Analisi Matematica |
Appare nelle tipologie: | 1.01 Articolo in rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
2019_JMP_PapageorgiouVetroVetro.pdf | Articolo principale | Versione Editoriale | Open Access Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.