We consider nonlinear, nonhomogeneous Robin problems with a (p - 1)-superlinear reaction term, which need not satisfy the Ambrosetti-Rabinowitz condition. We look for positive solutions and prove existence and multiplicity theorems. For the particular case of the p-Laplacian, we prove existence results under a different geometry near the origin.

Papageorgiou N.S., Vetro C., Vetro F. (2019). Solutions and positive solutions for superlinear Robin problems. JOURNAL OF MATHEMATICAL PHYSICS, 60(10), 1-26 [10.1063/1.5118760].

Solutions and positive solutions for superlinear Robin problems

Vetro C.;
2019-01-01

Abstract

We consider nonlinear, nonhomogeneous Robin problems with a (p - 1)-superlinear reaction term, which need not satisfy the Ambrosetti-Rabinowitz condition. We look for positive solutions and prove existence and multiplicity theorems. For the particular case of the p-Laplacian, we prove existence results under a different geometry near the origin.
Settore MAT/05 - Analisi Matematica
https://doi.org/10.1063/1.5118760
Papageorgiou N.S., Vetro C., Vetro F. (2019). Solutions and positive solutions for superlinear Robin problems. JOURNAL OF MATHEMATICAL PHYSICS, 60(10), 1-26 [10.1063/1.5118760].
File in questo prodotto:
File Dimensione Formato  
2019_JMP_PapageorgiouVetroVetro.pdf

Open Access dal 15/10/2020

Descrizione: Articolo principale
Tipologia: Versione Editoriale
Dimensione 4.18 MB
Formato Adobe PDF
4.18 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/398448
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 3
social impact