We consider nonlinear, nonhomogeneous Robin problems with a (p - 1)-superlinear reaction term, which need not satisfy the Ambrosetti-Rabinowitz condition. We look for positive solutions and prove existence and multiplicity theorems. For the particular case of the p-Laplacian, we prove existence results under a different geometry near the origin.
Papageorgiou N.S., Vetro C., & Vetro F. (2019). Solutions and positive solutions for superlinear Robin problems. JOURNAL OF MATHEMATICAL PHYSICS, 60(10), 1-26 [10.1063/1.5118760].
Data di pubblicazione: | 2019 | |
Titolo: | Solutions and positive solutions for superlinear Robin problems | |
Autori: | ||
Citazione: | Papageorgiou N.S., Vetro C., & Vetro F. (2019). Solutions and positive solutions for superlinear Robin problems. JOURNAL OF MATHEMATICAL PHYSICS, 60(10), 1-26 [10.1063/1.5118760]. | |
Rivista: | ||
Digital Object Identifier (DOI): | http://dx.doi.org/10.1063/1.5118760 | |
Abstract: | We consider nonlinear, nonhomogeneous Robin problems with a (p - 1)-superlinear reaction term, which need not satisfy the Ambrosetti-Rabinowitz condition. We look for positive solutions and prove existence and multiplicity theorems. For the particular case of the p-Laplacian, we prove existence results under a different geometry near the origin. | |
URL: | https://doi.org/10.1063/1.5118760 | |
Settore Scientifico Disciplinare: | Settore MAT/05 - Analisi Matematica | |
Appare nelle tipologie: | 1.01 Articolo in rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
2019_JMP_PapageorgiouVetroVetro.pdf | Articolo principale | Versione Editoriale | Open Access Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.