The aim of this note is to announce some results on the GIT problem for the Hilbert and Chow scheme of curves of degree d and genus g in P^d-g, whose full details will appear in a subsequent paper. In particular, we extend the previous results of L. Caporaso up to d>4(2g-2) and we observe that this is sharp. In the range 2(2g-2)<7/2(2g-2), we get a complete new description of the GIT quotient. As a corollary, we get a new compactification of the universal Jacobian over the moduli space of pseudo-stable curves.

G. Bini, M. Melo, F. Viviani (2012). On GIT quotients of Hilbert and Chow schemes of curves, 19, 33-40 [10.3934/era.2012.19.33].

On GIT quotients of Hilbert and Chow schemes of curves

G. Bini;
2012-01-01

Abstract

The aim of this note is to announce some results on the GIT problem for the Hilbert and Chow scheme of curves of degree d and genus g in P^d-g, whose full details will appear in a subsequent paper. In particular, we extend the previous results of L. Caporaso up to d>4(2g-2) and we observe that this is sharp. In the range 2(2g-2)<7/2(2g-2), we get a complete new description of the GIT quotient. As a corollary, we get a new compactification of the universal Jacobian over the moduli space of pseudo-stable curves.
2012
G. Bini, M. Melo, F. Viviani (2012). On GIT quotients of Hilbert and Chow schemes of curves, 19, 33-40 [10.3934/era.2012.19.33].
File in questo prodotto:
File Dimensione Formato  
1507.06476.pdf

accesso aperto

Tipologia: Pre-print
Dimensione 194.42 kB
Formato Adobe PDF
194.42 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/398173
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 3
social impact