We give an explicit example of log Calabi-Yau pairs that are log canonical and have a linearly decreasing Euler characteristic. This is constructed in terms of a degree two covering of a sequence of blow ups of three dimensional projective bundles over the Segre-Hirzebruch surfaces F-n for every positive integer n big enough.

G. Bini, F.F. Favale (2017). An unbounded family of log Calabi-Yau pairs. ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI. RENDICONTI LINCEI. MATEMATICA E APPLICAZIONI, 28(3), 619-633 [10.4171/RLM/779].

An unbounded family of log Calabi-Yau pairs

G. Bini;
2017-01-01

Abstract

We give an explicit example of log Calabi-Yau pairs that are log canonical and have a linearly decreasing Euler characteristic. This is constructed in terms of a degree two covering of a sequence of blow ups of three dimensional projective bundles over the Segre-Hirzebruch surfaces F-n for every positive integer n big enough.
2017
G. Bini, F.F. Favale (2017). An unbounded family of log Calabi-Yau pairs. ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI. RENDICONTI LINCEI. MATEMATICA E APPLICAZIONI, 28(3), 619-633 [10.4171/RLM/779].
File in questo prodotto:
File Dimensione Formato  
RLM-2017-028-003-11.pdf

Solo gestori archvio

Tipologia: Versione Editoriale
Dimensione 128.83 kB
Formato Adobe PDF
128.83 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/396283
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact