Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare and aggressive hematologic malignancy for which there is still no effective B therapy. In order to identify genetic alterations useful for a new treatment design, we used whole-exome sequencing to analyze 14 BPDCN patients and the patient-derived CAL-1 cell line. The functional enrichment analysis of mutational data reported the epigenetic regulatory program to be the most significantly undermined (P<0.0001). In particular, twenty-five epigenetic modifiers were found mutated (e.g. ASXL1, TET2, SUZ12, ARID1A, PHF2, CHD8); ASXL1 was the most frequently affected (28.6% of cases). To evaluate the impact of the identified epigenetic mutations at the gene-expression and Histone H3 lysine 27 trimethylation/acetylation levels, we performed additional RNA and pathology tissue-chromatin immunoprecipitation sequencing experiments. The patients displayed enrichment in gene signatures regulated by methylation and modifiable by decitabine administration, shared common H3K27-acetylated regions, and had a set of cell-cycle genes aberrantly up-regulated and marked by promoter acetylation. Collectively, the integration of sequencing data showed the potential of a therapy based on epigenetic agents. Through the adoption of a preclinical BPDCN mouse model, established by CAL-1 cell line xenografting, we demonstrated the efficacy of the combination of the epigenetic drugs 5’-azacytidine and decitabine in controlling disease progression in vivo.
Sapienza, M., Abate, F., Melle, F., Orecchioni, S., Fuligni, F., Etebari, M., et al. (2019). Blastic plasmacytoid dendritic cell neoplasm: Genomics mark epigenetic dysregulation as a primary therapeutic target. HAEMATOLOGICA, 104(4), 729-737.
Data di pubblicazione: | 2019 |
Titolo: | Blastic plasmacytoid dendritic cell neoplasm: Genomics mark epigenetic dysregulation as a primary therapeutic target |
Autori: | |
Citazione: | Sapienza, M., Abate, F., Melle, F., Orecchioni, S., Fuligni, F., Etebari, M., et al. (2019). Blastic plasmacytoid dendritic cell neoplasm: Genomics mark epigenetic dysregulation as a primary therapeutic target. HAEMATOLOGICA, 104(4), 729-737. |
Rivista: | |
Digital Object Identifier (DOI): | http://dx.doi.org/10.3324/haematol.2018.202093 |
Abstract: | Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare and aggressive hematologic malignancy for which there is still no effective B therapy. In order to identify genetic alterations useful for a new treatment design, we used whole-exome sequencing to analyze 14 BPDCN patients and the patient-derived CAL-1 cell line. The functional enrichment analysis of mutational data reported the epigenetic regulatory program to be the most significantly undermined (P<0.0001). In particular, twenty-five epigenetic modifiers were found mutated (e.g. ASXL1, TET2, SUZ12, ARID1A, PHF2, CHD8); ASXL1 was the most frequently affected (28.6% of cases). To evaluate the impact of the identified epigenetic mutations at the gene-expression and Histone H3 lysine 27 trimethylation/acetylation levels, we performed additional RNA and pathology tissue-chromatin immunoprecipitation sequencing experiments. The patients displayed enrichment in gene signatures regulated by methylation and modifiable by decitabine administration, shared common H3K27-acetylated regions, and had a set of cell-cycle genes aberrantly up-regulated and marked by promoter acetylation. Collectively, the integration of sequencing data showed the potential of a therapy based on epigenetic agents. Through the adoption of a preclinical BPDCN mouse model, established by CAL-1 cell line xenografting, we demonstrated the efficacy of the combination of the epigenetic drugs 5’-azacytidine and decitabine in controlling disease progression in vivo. |
URL: | http://www.haematologica.org/content/104/4/729.pdf |
Appare nelle tipologie: | 1.01 Articolo in rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
Blastic plasmacytoid dendritic cell.pdf | Versione Editoriale | Open Access Visualizza/Apri |