Purpose: The model drug norfloxacin (NOR)was encapsulated into trehalose (TRH) and hydroxyethylcellulose(NAT) microspheres to obtain a novel gelling ophthalmic delivery system for prolonged release on corneal tissue. Methods: We assessed NOR release from microspheres, prepared by the emulsion-solvent evaporation method. A new in vitro tear turnover model, including inserts containing reconstituted human corneal epithelium (RHC), was designed to evaluate the TRH/NAT microspheres’ precorneal retention time. Bioadhesive properties of TRH/NAT microspheres were validated by using drug-loaded microspheres prepared with gelatine (GLT) commonly used as reference material in adhesion studies. Results: In vitro drug release showed a typical trend of swelling systems. Precorneal retention tests showed that TRH/NAT microspheres maintained fluorescence in tear fluid for 81.7 min, whereas TRH/GLT microspheres and water solution maintained fluorescence for 51.8 and 22.3 min, respectively. NOR released from microspheres permeated throughout RHC slower (Js = 23.08 μ g/cm2h) than NOR from commercial eye drops Js = 42.77 μ g/cm2h) used as the control. Conclusions: Adequate drug concentrations in aqueous humor could be prolonged after the administration of TRH/NAT/NOR microspheres. Good bioadhesive properties of the system and slow drug release on corneal surface might increase ocular NOR bioavailability.
Giannola L I, De Caro V, Giandalia G, Siragusa M G, Cordone L (2008). Ocular gelling microspheres: in vitro Precorneal retention time and drug permeation through reconstituted corneal epithelium. JOURNAL OF OCULAR PHARMACOLOGY AND THERAPEUTICS, 24(2), 186-196 [10.1089/jop.2007.0113].
Ocular gelling microspheres: in vitro Precorneal retention time and drug permeation through reconstituted corneal epithelium
GIANNOLA, Libero Italo;DE CARO, Viviana;GIANDALIA, Giulia;SIRAGUSA, Maria Gabriella;CORDONE, Lorenzo
2008-01-01
Abstract
Purpose: The model drug norfloxacin (NOR)was encapsulated into trehalose (TRH) and hydroxyethylcellulose(NAT) microspheres to obtain a novel gelling ophthalmic delivery system for prolonged release on corneal tissue. Methods: We assessed NOR release from microspheres, prepared by the emulsion-solvent evaporation method. A new in vitro tear turnover model, including inserts containing reconstituted human corneal epithelium (RHC), was designed to evaluate the TRH/NAT microspheres’ precorneal retention time. Bioadhesive properties of TRH/NAT microspheres were validated by using drug-loaded microspheres prepared with gelatine (GLT) commonly used as reference material in adhesion studies. Results: In vitro drug release showed a typical trend of swelling systems. Precorneal retention tests showed that TRH/NAT microspheres maintained fluorescence in tear fluid for 81.7 min, whereas TRH/GLT microspheres and water solution maintained fluorescence for 51.8 and 22.3 min, respectively. NOR released from microspheres permeated throughout RHC slower (Js = 23.08 μ g/cm2h) than NOR from commercial eye drops Js = 42.77 μ g/cm2h) used as the control. Conclusions: Adequate drug concentrations in aqueous humor could be prolonged after the administration of TRH/NAT/NOR microspheres. Good bioadhesive properties of the system and slow drug release on corneal surface might increase ocular NOR bioavailability.File | Dimensione | Formato | |
---|---|---|---|
22- Ocular Gelling Microspheres.pdf
Solo gestori archvio
Descrizione: paper
Dimensione
572.61 kB
Formato
Adobe PDF
|
572.61 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.