Integral properties of multifunctions with closed convex values are studied. In this more general framework not all the tools and the technique used for weakly compact convex valued multifunctions work. We prove that positive Denjoy-Pettis integrable multifunctions are Pettis integrable and we obtain a full description of McShane integrability in terms of Henstock and Pettis integrability, finishing the problem started by Fremlin in 1994

Domenico Candeloro, Luisa Di Piazza, Kazimiers Musial, Anna Rita Sambucini (2020). Integration of multifunctions with closed convex values in arbitrary Banach spaces. JOURNAL OF CONVEX ANALYSIS, 27(4), 1-14.

Integration of multifunctions with closed convex values in arbitrary Banach spaces

Domenico Candeloro;Luisa Di Piazza;
2020-01-01

Abstract

Integral properties of multifunctions with closed convex values are studied. In this more general framework not all the tools and the technique used for weakly compact convex valued multifunctions work. We prove that positive Denjoy-Pettis integrable multifunctions are Pettis integrable and we obtain a full description of McShane integrability in terms of Henstock and Pettis integrability, finishing the problem started by Fremlin in 1994
Settore MAT/05 - Analisi Matematica
Domenico Candeloro, Luisa Di Piazza, Kazimiers Musial, Anna Rita Sambucini (2020). Integration of multifunctions with closed convex values in arbitrary Banach spaces. JOURNAL OF CONVEX ANALYSIS, 27(4), 1-14.
File in questo prodotto:
File Dimensione Formato  
JCA2020.pdf

Solo gestori archvio

Tipologia: Versione Editoriale
Dimensione 131.27 kB
Formato Adobe PDF
131.27 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/393201
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact