Nicotine, the main psychoactive ingredient in tobacco, stimulates dopamine (DA) function, increasing DA neuronal activity and DA release. DA is involved in both motor control and in the rewarding and reinforcing effects of nicotine; however, the complete understanding of its molecular mechanisms is yet to be attained. Substantial evidence indicates that the reinforcing properties of drugs of abuse, including nicotine, can be affected by the nitric oxide (NO) system, which may act by modulating central dopaminergic function. In this study, using single cell recordings in vivo coupled with microiontophoresis and microdialysis in freely moving animals, the role of NO signaling on the hyperactivation elicited by nicotine of the nigrostriatal system was investigated in rats. Nicotine induced a dose-dependent increase of the firing activity of the substantia nigra pars compacta (SNc) DA neurons and DA and 3,4-dihydroxyphenylacetic acid (DOPAC) release in the striatum. Pharmacological manipulation of the NO system did not produce any change under basal condition in terms of neuronal discharge and DA release. In contrast, pretreatments with two NO synthase (NOS) inhibitors, N-omega-nitro-l-arginine methyl ester (l-NAME) and 7-nitroindazole (7-NI) were both capable of blocking the nicotine-induced increase of SNc DA neuron activity and DA striatal levels. The effects of nicotine in l-NAME and 7-NI-pretreated rats were partially restored when rats were pretreated with the NO donor molsidomine. These results further support the evidence of an important role played by NO on modulation of dopaminergic function and drug addiction, thus revealing new pharmacological possibilities in the treatment of nicotine dependence and other DA dysfunctions.

Di Matteo, V., Pierucci, M., Benigno, A., Orbàn, G., Crescimanno, G., Esposito, E., et al. (2009). Electrophysiological and neurochemical characterization of 7-nitroindazole and molsidomine acute and sub-chronic administration effects in the dopaminergic nigrostriatal system in rats. In G. Di Giovanni, V. Di Matteo, E. Esposito (a cura di), Birth, Life and Death of Dopaminergic Neurons in the Substantia Nigra (pp. 173-182). Springer Verlag New York Inc [10.1007/978-3-211-92660-4-14].

Electrophysiological and neurochemical characterization of 7-nitroindazole and molsidomine acute and sub-chronic administration effects in the dopaminergic nigrostriatal system in rats

BENIGNO, Arcangelo;ORBAN, Gergely;CRESCIMANNO, Giuseppe;DI GIOVANNI, Giuseppe
2009-01-01

Abstract

Nicotine, the main psychoactive ingredient in tobacco, stimulates dopamine (DA) function, increasing DA neuronal activity and DA release. DA is involved in both motor control and in the rewarding and reinforcing effects of nicotine; however, the complete understanding of its molecular mechanisms is yet to be attained. Substantial evidence indicates that the reinforcing properties of drugs of abuse, including nicotine, can be affected by the nitric oxide (NO) system, which may act by modulating central dopaminergic function. In this study, using single cell recordings in vivo coupled with microiontophoresis and microdialysis in freely moving animals, the role of NO signaling on the hyperactivation elicited by nicotine of the nigrostriatal system was investigated in rats. Nicotine induced a dose-dependent increase of the firing activity of the substantia nigra pars compacta (SNc) DA neurons and DA and 3,4-dihydroxyphenylacetic acid (DOPAC) release in the striatum. Pharmacological manipulation of the NO system did not produce any change under basal condition in terms of neuronal discharge and DA release. In contrast, pretreatments with two NO synthase (NOS) inhibitors, N-omega-nitro-l-arginine methyl ester (l-NAME) and 7-nitroindazole (7-NI) were both capable of blocking the nicotine-induced increase of SNc DA neuron activity and DA striatal levels. The effects of nicotine in l-NAME and 7-NI-pretreated rats were partially restored when rats were pretreated with the NO donor molsidomine. These results further support the evidence of an important role played by NO on modulation of dopaminergic function and drug addiction, thus revealing new pharmacological possibilities in the treatment of nicotine dependence and other DA dysfunctions.
2009
Di Matteo, V., Pierucci, M., Benigno, A., Orbàn, G., Crescimanno, G., Esposito, E., et al. (2009). Electrophysiological and neurochemical characterization of 7-nitroindazole and molsidomine acute and sub-chronic administration effects in the dopaminergic nigrostriatal system in rats. In G. Di Giovanni, V. Di Matteo, E. Esposito (a cura di), Birth, Life and Death of Dopaminergic Neurons in the Substantia Nigra (pp. 173-182). Springer Verlag New York Inc [10.1007/978-3-211-92660-4-14].
File in questo prodotto:
File Dimensione Formato  
Di Matteo JNTS2009.pdf

Solo gestori archvio

Descrizione: Articolo
Dimensione 280.54 kB
Formato Adobe PDF
280.54 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/39270
Citazioni
  • ???jsp.display-item.citation.pmc??? 6
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 5
social impact