The growing increment of the urbanization and on the other hand, the even more strict effluent limits imposed by the Water Framework Directive for the receiving water body quality state have lead to a need of upgrading several existing WWTP. With this respect HMBBR systems are an innovative solution since allow to upgrade existing high loaded WWTP without building new tanks. However, some uncertainties in their design, maintenance as well as performance have to be addressed due to their recent acquisition compared with well consolidated technologies such as activated sludge systems. In this light, a data gathering campaign on a HMBBR pilot plant has been performed. The aim was to detect the performance of such new technology as well as to survey about the influence effect of the carrier media filling ratio. Indeed, there may be problem of competitiveness between attached and suspended biomass that jointly operate in the same system for carbon and nitrogen removal. Such competitiveness may lead to a worsening of the system efficiency. The results are interesting and the gathered data in the experimental period show a slight difference in terms of performance behaviour, between the two systems (35 and 66%). Such result leads to address the filling ratio choice towards the 35%.

The growing increment of the urbanization and, on the other hand, the even more strict effluent limits imposed by the water Framework Directive for the receiving water body quality state have led to the need for upgrading several existing WWTP. With this respect HMBBR systems are an innovative solution since they allow to upgrade existing high loaded WWTP without building new tanks. However, some uncertainties in their design, maintenance as well as performance have to be addressed due to their recent acquisition compared with well consolidated technologies such as activated sludge systems. In this light, a data gathering campaign on a HMBBR pilot plant has been performed. The aim was to detect the performance of such new technology as well as to survey the influencing effect of the carrier media filling ratio. Indeed, there may be problem of competitiveness between attached and suspended biomass that jointly operate in the same system for carbon and nitrogen removal. Such competitiveness may lead to a worsening of the system efficiency. The results are interesting and the gathered data in the experimental period show a slight difference in terms of performance behaviour, between the two systems (35 and 66%). Such result leads to address the filling ratio choice towards the 35%.

DI TRAPANI, D., MANNINA, G., TORREGROSSA, M., VIVIANI, G. (2008). Hybrid moving bed biofilm reactors: a pilot plant experiment. WATER SCIENCE AND TECHNOLOGY, 57(10), 1539-1545 [doi:10.2166/wst.2008.219].

Hybrid moving bed biofilm reactors: a pilot plant experiment

DI TRAPANI, Daniele;MANNINA, Giorgio;TORREGROSSA, Michele;VIVIANI, Gaspare
2008-01-01

Abstract

The growing increment of the urbanization and, on the other hand, the even more strict effluent limits imposed by the water Framework Directive for the receiving water body quality state have led to the need for upgrading several existing WWTP. With this respect HMBBR systems are an innovative solution since they allow to upgrade existing high loaded WWTP without building new tanks. However, some uncertainties in their design, maintenance as well as performance have to be addressed due to their recent acquisition compared with well consolidated technologies such as activated sludge systems. In this light, a data gathering campaign on a HMBBR pilot plant has been performed. The aim was to detect the performance of such new technology as well as to survey the influencing effect of the carrier media filling ratio. Indeed, there may be problem of competitiveness between attached and suspended biomass that jointly operate in the same system for carbon and nitrogen removal. Such competitiveness may lead to a worsening of the system efficiency. The results are interesting and the gathered data in the experimental period show a slight difference in terms of performance behaviour, between the two systems (35 and 66%). Such result leads to address the filling ratio choice towards the 35%.
2008
DI TRAPANI, D., MANNINA, G., TORREGROSSA, M., VIVIANI, G. (2008). Hybrid moving bed biofilm reactors: a pilot plant experiment. WATER SCIENCE AND TECHNOLOGY, 57(10), 1539-1545 [doi:10.2166/wst.2008.219].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/38754
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 46
  • ???jsp.display-item.citation.isi??? 43
social impact