We consider a model for a granular flow in the slow erosion limit introduced in [31]. We propose an up-wind numerical scheme for this problem and show that the approximate solutions generated by the scheme converge to the unique entropy solution. Numerical examples are also presented showing the reliability of the scheme. We study also the finite time singularity formation for the model with the singularity tracking method, and we characterize the singularities as shocks in the solution.

Giuseppe Maria, C., Francesco, G., Vincenzo, S. (2020). Up-wind difference approximation and singularity formation for a slow erosion model. MODÉLISATION MATHÉMATIQUE ET ANALYSE NUMÉRIQUE, 54, 465-492 [10.1051/m2an/2019068].

Up-wind difference approximation and singularity formation for a slow erosion model

Francesco, Gargano;Vincenzo, Sciacca
2020-01-01

Abstract

We consider a model for a granular flow in the slow erosion limit introduced in [31]. We propose an up-wind numerical scheme for this problem and show that the approximate solutions generated by the scheme converge to the unique entropy solution. Numerical examples are also presented showing the reliability of the scheme. We study also the finite time singularity formation for the model with the singularity tracking method, and we characterize the singularities as shocks in the solution.
Settore MAT/07 - Fisica Matematica
https://www.esaim-m2an.org/component/article?access=doi&doi=10.1051/m2an/2019068
Giuseppe Maria, C., Francesco, G., Vincenzo, S. (2020). Up-wind difference approximation and singularity formation for a slow erosion model. MODÉLISATION MATHÉMATIQUE ET ANALYSE NUMÉRIQUE, 54, 465-492 [10.1051/m2an/2019068].
File in questo prodotto:
File Dimensione Formato  
2020_Esaim_CGS.pdf

Solo gestori archvio

Tipologia: Versione Editoriale
Dimensione 1.21 MB
Formato Adobe PDF
1.21 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/386709
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact