We have previously shown that PTHrP(38-94)-amide restrains growth and invasion "in vitro", causes striking toxicity and accelerates death of some breast cancer cell lines, the most responsive being MDA-MB231 whose tumorigenesis was also attenuated "in vivo". PTHrP(38-94)-amide contains the domain implicated in the nuclear import of PTHrP. Although the nucleus was identified as a destination for mid-region PTHrP, evidence for direct DNA-binding capability is lacking to date. Here, we examined the localization of PTHrP(38-94)-amide within MDA-MB231 cells and within metaphase spread preparations and characterized its DNA-binding properties, employing a combination of immunocytochemical, cytogenetic, "whole genome"/conventional PCR, EMSA and DNase footprinting techniques. The results obtained: (i) show that PTHrP(38-94)-amide gains access to the nuclear compartment of MDA-MB231 cell; (ii) demonstrate that PTHrP(38-94)-amide is a DNA-binding peptide; and, (iii) represent the first data to date on the potential molecular targets in both cellular chromatin and isolated oligonucleotides "in vitro".

CARADONNA F, BARBATA G, SCIANDRELLO G (2007). Genomewide hypomethylation and PTHrP gene hypermethylation as a model for the prediction of cancer risk in rheumatoid arthritis. In C. LUPARELLO (a cura di), Novel aspects of PTHrP physiopathology (pp. 305-320). NEW YORK : NOVA SCIENCE PUBLISHERS, INC..

Genomewide hypomethylation and PTHrP gene hypermethylation as a model for the prediction of cancer risk in rheumatoid arthritis

CARADONNA, Fabio;BARBATA, Giuseppa;SCIANDRELLO, Giulia
2007-01-01

Abstract

We have previously shown that PTHrP(38-94)-amide restrains growth and invasion "in vitro", causes striking toxicity and accelerates death of some breast cancer cell lines, the most responsive being MDA-MB231 whose tumorigenesis was also attenuated "in vivo". PTHrP(38-94)-amide contains the domain implicated in the nuclear import of PTHrP. Although the nucleus was identified as a destination for mid-region PTHrP, evidence for direct DNA-binding capability is lacking to date. Here, we examined the localization of PTHrP(38-94)-amide within MDA-MB231 cells and within metaphase spread preparations and characterized its DNA-binding properties, employing a combination of immunocytochemical, cytogenetic, "whole genome"/conventional PCR, EMSA and DNase footprinting techniques. The results obtained: (i) show that PTHrP(38-94)-amide gains access to the nuclear compartment of MDA-MB231 cell; (ii) demonstrate that PTHrP(38-94)-amide is a DNA-binding peptide; and, (iii) represent the first data to date on the potential molecular targets in both cellular chromatin and isolated oligonucleotides "in vitro".
2007
CARADONNA F, BARBATA G, SCIANDRELLO G (2007). Genomewide hypomethylation and PTHrP gene hypermethylation as a model for the prediction of cancer risk in rheumatoid arthritis. In C. LUPARELLO (a cura di), Novel aspects of PTHrP physiopathology (pp. 305-320). NEW YORK : NOVA SCIENCE PUBLISHERS, INC..
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/3857
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact