We have attempted to identify potential predictors foracute and late aortic events starting from admission computed tomographic images.

D'Ancona G., Lee J.J., Pasta S., Pilato G., Rinaudo A., Follis F., et al. (2014). Computational analysis to predict false-lumen perfusion and outcome of type B aortic dissection. JOURNAL OF THORACIC AND CARDIOVASCULAR SURGERY, 148(4), 1756-1758 [10.1016/j.jtcvs.2014.06.065].

Computational analysis to predict false-lumen perfusion and outcome of type B aortic dissection

Pasta S.;Rinaudo A.;
2014-01-01

Abstract

We have attempted to identify potential predictors foracute and late aortic events starting from admission computed tomographic images.
Settore ING-IND/34 - Bioingegneria Industriale
http://www.elsevier.com/inca/publications/store/6/2/3/1/5/1/index.htt
D'Ancona G., Lee J.J., Pasta S., Pilato G., Rinaudo A., Follis F., et al. (2014). Computational analysis to predict false-lumen perfusion and outcome of type B aortic dissection. JOURNAL OF THORACIC AND CARDIOVASCULAR SURGERY, 148(4), 1756-1758 [10.1016/j.jtcvs.2014.06.065].
File in questo prodotto:
File Dimensione Formato  
Computational analysis to predict false-lumen perfusion and outcome of type B aortic dissection.pdf

Solo gestori archvio

Descrizione: versione editoriale
Tipologia: Versione Editoriale
Dimensione 1.81 MB
Formato Adobe PDF
1.81 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/376227
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 6
social impact