Steel jacketing technique is a retrofitting method often employed for static and seismic strengthening of existing reinforced concrete columns. When no continuity is given to angle chords as they cross the floor, the jacket is considered “indirectly loaded”, which means that the load acting on the column is transferred partially to the external jacket through interface shear stresses. The evaluation of load transfer mechanism between core and jacket is not straightforward to be modeled, due to the absence of knowledge of a proper constitutive law of the concrete-to-steel interface and to the difficulties in taking into account the mechanical nonlinearities of materials. This paper presents an incremental analytical/numerical approach for evaluating the compressive response of RC columns strengthened with indirectly loaded jackets. The approach allows calculating shear stresses at the interface between core and jacket and predicting the axial capacity of retrofitted columns. A proper constitutive law is proposed for modelling the interaction between the steel and the concrete. Based on plasticity rules and the non-linear behaviour of materials, the column is divided into portions. After a detailed parametric analysis, comparisons are finally made by theoretical predictions and experimental results available in the literature, showing a good agreement.

Minafo G. (2019). An interface model for the analysis of the compressive behaviour of RC columns strengthened by steel jackets. STRUCTURAL ENGINEERING AND MECHANICS, 71(3), 233-244 [10.12989/sem.2019.71.3.233].

An interface model for the analysis of the compressive behaviour of RC columns strengthened by steel jackets

Minafo G.
2019-01-01

Abstract

Steel jacketing technique is a retrofitting method often employed for static and seismic strengthening of existing reinforced concrete columns. When no continuity is given to angle chords as they cross the floor, the jacket is considered “indirectly loaded”, which means that the load acting on the column is transferred partially to the external jacket through interface shear stresses. The evaluation of load transfer mechanism between core and jacket is not straightforward to be modeled, due to the absence of knowledge of a proper constitutive law of the concrete-to-steel interface and to the difficulties in taking into account the mechanical nonlinearities of materials. This paper presents an incremental analytical/numerical approach for evaluating the compressive response of RC columns strengthened with indirectly loaded jackets. The approach allows calculating shear stresses at the interface between core and jacket and predicting the axial capacity of retrofitted columns. A proper constitutive law is proposed for modelling the interaction between the steel and the concrete. Based on plasticity rules and the non-linear behaviour of materials, the column is divided into portions. After a detailed parametric analysis, comparisons are finally made by theoretical predictions and experimental results available in the literature, showing a good agreement.
2019
Settore ICAR/09 - Tecnica Delle Costruzioni
Minafo G. (2019). An interface model for the analysis of the compressive behaviour of RC columns strengthened by steel jackets. STRUCTURAL ENGINEERING AND MECHANICS, 71(3), 233-244 [10.12989/sem.2019.71.3.233].
File in questo prodotto:
File Dimensione Formato  
3..pdf

Solo gestori archvio

Descrizione: paper
Tipologia: Post-print
Dimensione 1.34 MB
Formato Adobe PDF
1.34 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/370754
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact