We analyse the Kitaev honeycomb model, by means of the Berry curvature with respect to Hamiltonian parameters. We concentrate on the ground-state vortex-free sector, which allows us to exploit an appropriate Fermionisation technique. The parameter space includes a time-reversal breaking term which provides an analytical headway to study the curvature in phases in which it would otherwise vanish. The curvature is then analysed in the limit in which the time-reversal-symmetry-breaking perturbation vanishes. This provides remarkable information about the topological phase transitions of the model. The Berry curvature in itself exhibits no singularities at criticality, nevertheless it distinguishes different phases by showing different behaviours. In particular, the analysis of the first derivative shows a critical behaviour around the transition point.

Bascone, F., Leonforte, L., Valenti, D., Spagnolo, B., Carollo, A. (2019). On critical properties of the Berry curvature in the Kitaev honeycomb model. JOURNAL OF STATISTICAL MECHANICS: THEORY AND EXPERIMENT, 2019(9), 094002-1-094002-15 [10.1088/1742-5468/ab35e9].

On critical properties of the Berry curvature in the Kitaev honeycomb model

Leonforte, Luca;Valenti, Davide;Spagnolo, Bernardo;Carollo, Angelo
2019-01-01

Abstract

We analyse the Kitaev honeycomb model, by means of the Berry curvature with respect to Hamiltonian parameters. We concentrate on the ground-state vortex-free sector, which allows us to exploit an appropriate Fermionisation technique. The parameter space includes a time-reversal breaking term which provides an analytical headway to study the curvature in phases in which it would otherwise vanish. The curvature is then analysed in the limit in which the time-reversal-symmetry-breaking perturbation vanishes. This provides remarkable information about the topological phase transitions of the model. The Berry curvature in itself exhibits no singularities at criticality, nevertheless it distinguishes different phases by showing different behaviours. In particular, the analysis of the first derivative shows a critical behaviour around the transition point.
2019
Bascone, F., Leonforte, L., Valenti, D., Spagnolo, B., Carollo, A. (2019). On critical properties of the Berry curvature in the Kitaev honeycomb model. JOURNAL OF STATISTICAL MECHANICS: THEORY AND EXPERIMENT, 2019(9), 094002-1-094002-15 [10.1088/1742-5468/ab35e9].
File in questo prodotto:
File Dimensione Formato  
BasconeJSTAT2019.pdf

Solo gestori archvio

Tipologia: Versione Editoriale
Dimensione 917.83 kB
Formato Adobe PDF
917.83 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
1905.04118.pdf

accesso aperto

Tipologia: Post-print
Dimensione 647.8 kB
Formato Adobe PDF
647.8 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/368771
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 5
social impact