Continuous assessment of plant water status indicators might provide the most precise information for irrigation management and automation, as plants represent an interface between soil and atmosphere. This study investigates the relationship of plant water status to continuous fruit diameter (FD) and inverse leaf turgor pressure rates (pp) in nectarine trees [Prunus persica (L.) Batsch] throughout fruit development. The influence of deficit irrigation treatments on stem (Ψstem) and leaf water potential, leaf relative water content, leaf hydraulic conductance and fruit growth was studied across the stages of double-sigmoidal fruit development in 'September Bright' nectarines. Fruit relative growth rate (RGR) and leaf pressure change rate (RPCR) were derived from FD and pp to represent rates of water in- and outflows in the organs, respectively. Continuous RGR and RPCR dynamics were independently and combinedly related to plant water status and environmental variables. The independent use of RGR and RPCR yielded significant associations with midday Ψstem, the most representative index of tree water status in anisohydric species. However, the combined use of nocturnal fruit and leaf parameters unveiled an even more significant relationship with Ψstem, suggesting a different fruit-to-leaf water balance in response to pronounced water deficit. In conclusion, we highlight the suitability of a multi-organ sensing approach for improved prediction of tree water status.

Scalisi, A., O’Connell, M.G., Stefanelli, D., Lo Bianco, R. (2019). Fruit and Leaf Sensing for Continuous Detection of Nectarine Water Status. FRONTIERS IN PLANT SCIENCE, 10 [10.3389/fpls.2019.00805].

Fruit and Leaf Sensing for Continuous Detection of Nectarine Water Status

Scalisi, Alessio
;
Lo Bianco, Riccardo
2019-01-01

Abstract

Continuous assessment of plant water status indicators might provide the most precise information for irrigation management and automation, as plants represent an interface between soil and atmosphere. This study investigates the relationship of plant water status to continuous fruit diameter (FD) and inverse leaf turgor pressure rates (pp) in nectarine trees [Prunus persica (L.) Batsch] throughout fruit development. The influence of deficit irrigation treatments on stem (Ψstem) and leaf water potential, leaf relative water content, leaf hydraulic conductance and fruit growth was studied across the stages of double-sigmoidal fruit development in 'September Bright' nectarines. Fruit relative growth rate (RGR) and leaf pressure change rate (RPCR) were derived from FD and pp to represent rates of water in- and outflows in the organs, respectively. Continuous RGR and RPCR dynamics were independently and combinedly related to plant water status and environmental variables. The independent use of RGR and RPCR yielded significant associations with midday Ψstem, the most representative index of tree water status in anisohydric species. However, the combined use of nocturnal fruit and leaf parameters unveiled an even more significant relationship with Ψstem, suggesting a different fruit-to-leaf water balance in response to pronounced water deficit. In conclusion, we highlight the suitability of a multi-organ sensing approach for improved prediction of tree water status.
2019
Scalisi, A., O’Connell, M.G., Stefanelli, D., Lo Bianco, R. (2019). Fruit and Leaf Sensing for Continuous Detection of Nectarine Water Status. FRONTIERS IN PLANT SCIENCE, 10 [10.3389/fpls.2019.00805].
File in questo prodotto:
File Dimensione Formato  
PublishedManuscript.pdf

accesso aperto

Tipologia: Versione Editoriale
Dimensione 8.08 MB
Formato Adobe PDF
8.08 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/362799
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 15
social impact